This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restriction of an operation class abstraction. (Contributed by NM, 10-Feb-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | resoprab | |- ( { <. <. x , y >. , z >. | ph } |` ( A X. B ) ) = { <. <. x , y >. , z >. | ( ( x e. A /\ y e. B ) /\ ph ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resopab | |- ( { <. w , z >. | E. x E. y ( w = <. x , y >. /\ ph ) } |` ( A X. B ) ) = { <. w , z >. | ( w e. ( A X. B ) /\ E. x E. y ( w = <. x , y >. /\ ph ) ) } |
|
| 2 | 19.42vv | |- ( E. x E. y ( w e. ( A X. B ) /\ ( w = <. x , y >. /\ ph ) ) <-> ( w e. ( A X. B ) /\ E. x E. y ( w = <. x , y >. /\ ph ) ) ) |
|
| 3 | an12 | |- ( ( w e. ( A X. B ) /\ ( w = <. x , y >. /\ ph ) ) <-> ( w = <. x , y >. /\ ( w e. ( A X. B ) /\ ph ) ) ) |
|
| 4 | eleq1 | |- ( w = <. x , y >. -> ( w e. ( A X. B ) <-> <. x , y >. e. ( A X. B ) ) ) |
|
| 5 | opelxp | |- ( <. x , y >. e. ( A X. B ) <-> ( x e. A /\ y e. B ) ) |
|
| 6 | 4 5 | bitrdi | |- ( w = <. x , y >. -> ( w e. ( A X. B ) <-> ( x e. A /\ y e. B ) ) ) |
| 7 | 6 | anbi1d | |- ( w = <. x , y >. -> ( ( w e. ( A X. B ) /\ ph ) <-> ( ( x e. A /\ y e. B ) /\ ph ) ) ) |
| 8 | 7 | pm5.32i | |- ( ( w = <. x , y >. /\ ( w e. ( A X. B ) /\ ph ) ) <-> ( w = <. x , y >. /\ ( ( x e. A /\ y e. B ) /\ ph ) ) ) |
| 9 | 3 8 | bitri | |- ( ( w e. ( A X. B ) /\ ( w = <. x , y >. /\ ph ) ) <-> ( w = <. x , y >. /\ ( ( x e. A /\ y e. B ) /\ ph ) ) ) |
| 10 | 9 | 2exbii | |- ( E. x E. y ( w e. ( A X. B ) /\ ( w = <. x , y >. /\ ph ) ) <-> E. x E. y ( w = <. x , y >. /\ ( ( x e. A /\ y e. B ) /\ ph ) ) ) |
| 11 | 2 10 | bitr3i | |- ( ( w e. ( A X. B ) /\ E. x E. y ( w = <. x , y >. /\ ph ) ) <-> E. x E. y ( w = <. x , y >. /\ ( ( x e. A /\ y e. B ) /\ ph ) ) ) |
| 12 | 11 | opabbii | |- { <. w , z >. | ( w e. ( A X. B ) /\ E. x E. y ( w = <. x , y >. /\ ph ) ) } = { <. w , z >. | E. x E. y ( w = <. x , y >. /\ ( ( x e. A /\ y e. B ) /\ ph ) ) } |
| 13 | 1 12 | eqtri | |- ( { <. w , z >. | E. x E. y ( w = <. x , y >. /\ ph ) } |` ( A X. B ) ) = { <. w , z >. | E. x E. y ( w = <. x , y >. /\ ( ( x e. A /\ y e. B ) /\ ph ) ) } |
| 14 | dfoprab2 | |- { <. <. x , y >. , z >. | ph } = { <. w , z >. | E. x E. y ( w = <. x , y >. /\ ph ) } |
|
| 15 | 14 | reseq1i | |- ( { <. <. x , y >. , z >. | ph } |` ( A X. B ) ) = ( { <. w , z >. | E. x E. y ( w = <. x , y >. /\ ph ) } |` ( A X. B ) ) |
| 16 | dfoprab2 | |- { <. <. x , y >. , z >. | ( ( x e. A /\ y e. B ) /\ ph ) } = { <. w , z >. | E. x E. y ( w = <. x , y >. /\ ( ( x e. A /\ y e. B ) /\ ph ) ) } |
|
| 17 | 13 15 16 | 3eqtr4i | |- ( { <. <. x , y >. , z >. | ph } |` ( A X. B ) ) = { <. <. x , y >. , z >. | ( ( x e. A /\ y e. B ) /\ ph ) } |