This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restriction of a class abstraction of ordered pairs. (Contributed by NM, 24-Aug-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | resopab2 | |- ( A C_ B -> ( { <. x , y >. | ( x e. B /\ ph ) } |` A ) = { <. x , y >. | ( x e. A /\ ph ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resopab | |- ( { <. x , y >. | ( x e. B /\ ph ) } |` A ) = { <. x , y >. | ( x e. A /\ ( x e. B /\ ph ) ) } |
|
| 2 | ssel | |- ( A C_ B -> ( x e. A -> x e. B ) ) |
|
| 3 | 2 | pm4.71d | |- ( A C_ B -> ( x e. A <-> ( x e. A /\ x e. B ) ) ) |
| 4 | 3 | anbi1d | |- ( A C_ B -> ( ( x e. A /\ ph ) <-> ( ( x e. A /\ x e. B ) /\ ph ) ) ) |
| 5 | anass | |- ( ( ( x e. A /\ x e. B ) /\ ph ) <-> ( x e. A /\ ( x e. B /\ ph ) ) ) |
|
| 6 | 4 5 | bitr2di | |- ( A C_ B -> ( ( x e. A /\ ( x e. B /\ ph ) ) <-> ( x e. A /\ ph ) ) ) |
| 7 | 6 | opabbidv | |- ( A C_ B -> { <. x , y >. | ( x e. A /\ ( x e. B /\ ph ) ) } = { <. x , y >. | ( x e. A /\ ph ) } ) |
| 8 | 1 7 | eqtrid | |- ( A C_ B -> ( { <. x , y >. | ( x e. B /\ ph ) } |` A ) = { <. x , y >. | ( x e. A /\ ph ) } ) |