This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restriction of a class abstraction of ordered pairs. (Contributed by NM, 24-Aug-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | resopab2 | ⊢ ( 𝐴 ⊆ 𝐵 → ( { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐵 ∧ 𝜑 ) } ↾ 𝐴 ) = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resopab | ⊢ ( { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐵 ∧ 𝜑 ) } ↾ 𝐴 ) = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝜑 ) ) } | |
| 2 | ssel | ⊢ ( 𝐴 ⊆ 𝐵 → ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵 ) ) | |
| 3 | 2 | pm4.71d | ⊢ ( 𝐴 ⊆ 𝐵 → ( 𝑥 ∈ 𝐴 ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ) ) |
| 4 | 3 | anbi1d | ⊢ ( 𝐴 ⊆ 𝐵 → ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝜑 ) ) ) |
| 5 | anass | ⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝜑 ) ↔ ( 𝑥 ∈ 𝐴 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝜑 ) ) ) | |
| 6 | 4 5 | bitr2di | ⊢ ( 𝐴 ⊆ 𝐵 → ( ( 𝑥 ∈ 𝐴 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝜑 ) ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) ) |
| 7 | 6 | opabbidv | ⊢ ( 𝐴 ⊆ 𝐵 → { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝜑 ) ) } = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } ) |
| 8 | 1 7 | eqtrid | ⊢ ( 𝐴 ⊆ 𝐵 → ( { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐵 ∧ 𝜑 ) } ↾ 𝐴 ) = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } ) |