This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restriction of the mapping operation. (Contributed by Thierry Arnoux, 28-Mar-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | resmptf.a | |- F/_ x A |
|
| resmptf.b | |- F/_ x B |
||
| Assertion | resmptf | |- ( B C_ A -> ( ( x e. A |-> C ) |` B ) = ( x e. B |-> C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resmptf.a | |- F/_ x A |
|
| 2 | resmptf.b | |- F/_ x B |
|
| 3 | resmpt | |- ( B C_ A -> ( ( y e. A |-> [_ y / x ]_ C ) |` B ) = ( y e. B |-> [_ y / x ]_ C ) ) |
|
| 4 | nfcv | |- F/_ y A |
|
| 5 | nfcv | |- F/_ y C |
|
| 6 | nfcsb1v | |- F/_ x [_ y / x ]_ C |
|
| 7 | csbeq1a | |- ( x = y -> C = [_ y / x ]_ C ) |
|
| 8 | 1 4 5 6 7 | cbvmptf | |- ( x e. A |-> C ) = ( y e. A |-> [_ y / x ]_ C ) |
| 9 | 8 | reseq1i | |- ( ( x e. A |-> C ) |` B ) = ( ( y e. A |-> [_ y / x ]_ C ) |` B ) |
| 10 | nfcv | |- F/_ y B |
|
| 11 | 2 10 5 6 7 | cbvmptf | |- ( x e. B |-> C ) = ( y e. B |-> [_ y / x ]_ C ) |
| 12 | 3 9 11 | 3eqtr4g | |- ( B C_ A -> ( ( x e. A |-> C ) |` B ) = ( x e. B |-> C ) ) |