This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the functor restriction operator. (Contributed by Mario Carneiro, 6-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | resfval.c | |- ( ph -> F e. V ) |
|
| resfval.d | |- ( ph -> H e. W ) |
||
| resfval2.g | |- ( ph -> G e. X ) |
||
| resfval2.d | |- ( ph -> H Fn ( S X. S ) ) |
||
| Assertion | resfval2 | |- ( ph -> ( <. F , G >. |`f H ) = <. ( F |` S ) , ( x e. S , y e. S |-> ( ( x G y ) |` ( x H y ) ) ) >. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resfval.c | |- ( ph -> F e. V ) |
|
| 2 | resfval.d | |- ( ph -> H e. W ) |
|
| 3 | resfval2.g | |- ( ph -> G e. X ) |
|
| 4 | resfval2.d | |- ( ph -> H Fn ( S X. S ) ) |
|
| 5 | opex | |- <. F , G >. e. _V |
|
| 6 | 5 | a1i | |- ( ph -> <. F , G >. e. _V ) |
| 7 | 6 2 | resfval | |- ( ph -> ( <. F , G >. |`f H ) = <. ( ( 1st ` <. F , G >. ) |` dom dom H ) , ( z e. dom H |-> ( ( ( 2nd ` <. F , G >. ) ` z ) |` ( H ` z ) ) ) >. ) |
| 8 | op1stg | |- ( ( F e. V /\ G e. X ) -> ( 1st ` <. F , G >. ) = F ) |
|
| 9 | 1 3 8 | syl2anc | |- ( ph -> ( 1st ` <. F , G >. ) = F ) |
| 10 | 4 | fndmd | |- ( ph -> dom H = ( S X. S ) ) |
| 11 | 10 | dmeqd | |- ( ph -> dom dom H = dom ( S X. S ) ) |
| 12 | dmxpid | |- dom ( S X. S ) = S |
|
| 13 | 11 12 | eqtrdi | |- ( ph -> dom dom H = S ) |
| 14 | 9 13 | reseq12d | |- ( ph -> ( ( 1st ` <. F , G >. ) |` dom dom H ) = ( F |` S ) ) |
| 15 | op2ndg | |- ( ( F e. V /\ G e. X ) -> ( 2nd ` <. F , G >. ) = G ) |
|
| 16 | 1 3 15 | syl2anc | |- ( ph -> ( 2nd ` <. F , G >. ) = G ) |
| 17 | 16 | fveq1d | |- ( ph -> ( ( 2nd ` <. F , G >. ) ` z ) = ( G ` z ) ) |
| 18 | 17 | reseq1d | |- ( ph -> ( ( ( 2nd ` <. F , G >. ) ` z ) |` ( H ` z ) ) = ( ( G ` z ) |` ( H ` z ) ) ) |
| 19 | 10 18 | mpteq12dv | |- ( ph -> ( z e. dom H |-> ( ( ( 2nd ` <. F , G >. ) ` z ) |` ( H ` z ) ) ) = ( z e. ( S X. S ) |-> ( ( G ` z ) |` ( H ` z ) ) ) ) |
| 20 | fveq2 | |- ( z = <. x , y >. -> ( G ` z ) = ( G ` <. x , y >. ) ) |
|
| 21 | df-ov | |- ( x G y ) = ( G ` <. x , y >. ) |
|
| 22 | 20 21 | eqtr4di | |- ( z = <. x , y >. -> ( G ` z ) = ( x G y ) ) |
| 23 | fveq2 | |- ( z = <. x , y >. -> ( H ` z ) = ( H ` <. x , y >. ) ) |
|
| 24 | df-ov | |- ( x H y ) = ( H ` <. x , y >. ) |
|
| 25 | 23 24 | eqtr4di | |- ( z = <. x , y >. -> ( H ` z ) = ( x H y ) ) |
| 26 | 22 25 | reseq12d | |- ( z = <. x , y >. -> ( ( G ` z ) |` ( H ` z ) ) = ( ( x G y ) |` ( x H y ) ) ) |
| 27 | 26 | mpompt | |- ( z e. ( S X. S ) |-> ( ( G ` z ) |` ( H ` z ) ) ) = ( x e. S , y e. S |-> ( ( x G y ) |` ( x H y ) ) ) |
| 28 | 19 27 | eqtrdi | |- ( ph -> ( z e. dom H |-> ( ( ( 2nd ` <. F , G >. ) ` z ) |` ( H ` z ) ) ) = ( x e. S , y e. S |-> ( ( x G y ) |` ( x H y ) ) ) ) |
| 29 | 14 28 | opeq12d | |- ( ph -> <. ( ( 1st ` <. F , G >. ) |` dom dom H ) , ( z e. dom H |-> ( ( ( 2nd ` <. F , G >. ) ` z ) |` ( H ` z ) ) ) >. = <. ( F |` S ) , ( x e. S , y e. S |-> ( ( x G y ) |` ( x H y ) ) ) >. ) |
| 30 | 7 29 | eqtrd | |- ( ph -> ( <. F , G >. |`f H ) = <. ( F |` S ) , ( x e. S , y e. S |-> ( ( x G y ) |` ( x H y ) ) ) >. ) |