This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the functor restriction operator on objects. (Contributed by Mario Carneiro, 6-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | resf1st.f | |- ( ph -> F e. V ) |
|
| resf1st.h | |- ( ph -> H e. W ) |
||
| resf1st.s | |- ( ph -> H Fn ( S X. S ) ) |
||
| Assertion | resf1st | |- ( ph -> ( 1st ` ( F |`f H ) ) = ( ( 1st ` F ) |` S ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resf1st.f | |- ( ph -> F e. V ) |
|
| 2 | resf1st.h | |- ( ph -> H e. W ) |
|
| 3 | resf1st.s | |- ( ph -> H Fn ( S X. S ) ) |
|
| 4 | 1 2 | resfval | |- ( ph -> ( F |`f H ) = <. ( ( 1st ` F ) |` dom dom H ) , ( z e. dom H |-> ( ( ( 2nd ` F ) ` z ) |` ( H ` z ) ) ) >. ) |
| 5 | 4 | fveq2d | |- ( ph -> ( 1st ` ( F |`f H ) ) = ( 1st ` <. ( ( 1st ` F ) |` dom dom H ) , ( z e. dom H |-> ( ( ( 2nd ` F ) ` z ) |` ( H ` z ) ) ) >. ) ) |
| 6 | fvex | |- ( 1st ` F ) e. _V |
|
| 7 | 6 | resex | |- ( ( 1st ` F ) |` dom dom H ) e. _V |
| 8 | dmexg | |- ( H e. W -> dom H e. _V ) |
|
| 9 | mptexg | |- ( dom H e. _V -> ( z e. dom H |-> ( ( ( 2nd ` F ) ` z ) |` ( H ` z ) ) ) e. _V ) |
|
| 10 | 2 8 9 | 3syl | |- ( ph -> ( z e. dom H |-> ( ( ( 2nd ` F ) ` z ) |` ( H ` z ) ) ) e. _V ) |
| 11 | op1stg | |- ( ( ( ( 1st ` F ) |` dom dom H ) e. _V /\ ( z e. dom H |-> ( ( ( 2nd ` F ) ` z ) |` ( H ` z ) ) ) e. _V ) -> ( 1st ` <. ( ( 1st ` F ) |` dom dom H ) , ( z e. dom H |-> ( ( ( 2nd ` F ) ` z ) |` ( H ` z ) ) ) >. ) = ( ( 1st ` F ) |` dom dom H ) ) |
|
| 12 | 7 10 11 | sylancr | |- ( ph -> ( 1st ` <. ( ( 1st ` F ) |` dom dom H ) , ( z e. dom H |-> ( ( ( 2nd ` F ) ` z ) |` ( H ` z ) ) ) >. ) = ( ( 1st ` F ) |` dom dom H ) ) |
| 13 | 3 | fndmd | |- ( ph -> dom H = ( S X. S ) ) |
| 14 | 13 | dmeqd | |- ( ph -> dom dom H = dom ( S X. S ) ) |
| 15 | dmxpid | |- dom ( S X. S ) = S |
|
| 16 | 14 15 | eqtrdi | |- ( ph -> dom dom H = S ) |
| 17 | 16 | reseq2d | |- ( ph -> ( ( 1st ` F ) |` dom dom H ) = ( ( 1st ` F ) |` S ) ) |
| 18 | 5 12 17 | 3eqtrd | |- ( ph -> ( 1st ` ( F |`f H ) ) = ( ( 1st ` F ) |` S ) ) |