This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The constructed function mapping a half-open range of nonnegative integers to a constant is a function. (Contributed by AV, 4-Nov-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | repsf | |- ( ( S e. V /\ N e. NN0 ) -> ( S repeatS N ) : ( 0 ..^ N ) --> V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | |- ( ( S e. V /\ x e. ( 0 ..^ N ) ) -> S e. V ) |
|
| 2 | 1 | ralrimiva | |- ( S e. V -> A. x e. ( 0 ..^ N ) S e. V ) |
| 3 | 2 | adantr | |- ( ( S e. V /\ N e. NN0 ) -> A. x e. ( 0 ..^ N ) S e. V ) |
| 4 | eqid | |- ( x e. ( 0 ..^ N ) |-> S ) = ( x e. ( 0 ..^ N ) |-> S ) |
|
| 5 | 4 | fmpt | |- ( A. x e. ( 0 ..^ N ) S e. V <-> ( x e. ( 0 ..^ N ) |-> S ) : ( 0 ..^ N ) --> V ) |
| 6 | 3 5 | sylib | |- ( ( S e. V /\ N e. NN0 ) -> ( x e. ( 0 ..^ N ) |-> S ) : ( 0 ..^ N ) --> V ) |
| 7 | reps | |- ( ( S e. V /\ N e. NN0 ) -> ( S repeatS N ) = ( x e. ( 0 ..^ N ) |-> S ) ) |
|
| 8 | 7 | feq1d | |- ( ( S e. V /\ N e. NN0 ) -> ( ( S repeatS N ) : ( 0 ..^ N ) --> V <-> ( x e. ( 0 ..^ N ) |-> S ) : ( 0 ..^ N ) --> V ) ) |
| 9 | 6 8 | mpbird | |- ( ( S e. V /\ N e. NN0 ) -> ( S repeatS N ) : ( 0 ..^ N ) --> V ) |