This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restriction of a relation to its field. (Contributed by FL, 15-Apr-2012)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | relresfld | |- ( Rel R -> ( R |` U. U. R ) = R ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relfld | |- ( Rel R -> U. U. R = ( dom R u. ran R ) ) |
|
| 2 | 1 | reseq2d | |- ( Rel R -> ( R |` U. U. R ) = ( R |` ( dom R u. ran R ) ) ) |
| 3 | resundi | |- ( R |` ( dom R u. ran R ) ) = ( ( R |` dom R ) u. ( R |` ran R ) ) |
|
| 4 | eqtr | |- ( ( ( R |` U. U. R ) = ( R |` ( dom R u. ran R ) ) /\ ( R |` ( dom R u. ran R ) ) = ( ( R |` dom R ) u. ( R |` ran R ) ) ) -> ( R |` U. U. R ) = ( ( R |` dom R ) u. ( R |` ran R ) ) ) |
|
| 5 | resss | |- ( R |` ran R ) C_ R |
|
| 6 | resdm | |- ( Rel R -> ( R |` dom R ) = R ) |
|
| 7 | ssequn2 | |- ( ( R |` ran R ) C_ R <-> ( R u. ( R |` ran R ) ) = R ) |
|
| 8 | uneq1 | |- ( ( R |` dom R ) = R -> ( ( R |` dom R ) u. ( R |` ran R ) ) = ( R u. ( R |` ran R ) ) ) |
|
| 9 | 8 | eqeq2d | |- ( ( R |` dom R ) = R -> ( ( R |` U. U. R ) = ( ( R |` dom R ) u. ( R |` ran R ) ) <-> ( R |` U. U. R ) = ( R u. ( R |` ran R ) ) ) ) |
| 10 | eqtr | |- ( ( ( R |` U. U. R ) = ( R u. ( R |` ran R ) ) /\ ( R u. ( R |` ran R ) ) = R ) -> ( R |` U. U. R ) = R ) |
|
| 11 | 10 | ex | |- ( ( R |` U. U. R ) = ( R u. ( R |` ran R ) ) -> ( ( R u. ( R |` ran R ) ) = R -> ( R |` U. U. R ) = R ) ) |
| 12 | 9 11 | biimtrdi | |- ( ( R |` dom R ) = R -> ( ( R |` U. U. R ) = ( ( R |` dom R ) u. ( R |` ran R ) ) -> ( ( R u. ( R |` ran R ) ) = R -> ( R |` U. U. R ) = R ) ) ) |
| 13 | 12 | com3r | |- ( ( R u. ( R |` ran R ) ) = R -> ( ( R |` dom R ) = R -> ( ( R |` U. U. R ) = ( ( R |` dom R ) u. ( R |` ran R ) ) -> ( R |` U. U. R ) = R ) ) ) |
| 14 | 7 13 | sylbi | |- ( ( R |` ran R ) C_ R -> ( ( R |` dom R ) = R -> ( ( R |` U. U. R ) = ( ( R |` dom R ) u. ( R |` ran R ) ) -> ( R |` U. U. R ) = R ) ) ) |
| 15 | 5 6 14 | mpsyl | |- ( Rel R -> ( ( R |` U. U. R ) = ( ( R |` dom R ) u. ( R |` ran R ) ) -> ( R |` U. U. R ) = R ) ) |
| 16 | 4 15 | syl5com | |- ( ( ( R |` U. U. R ) = ( R |` ( dom R u. ran R ) ) /\ ( R |` ( dom R u. ran R ) ) = ( ( R |` dom R ) u. ( R |` ran R ) ) ) -> ( Rel R -> ( R |` U. U. R ) = R ) ) |
| 17 | 2 3 16 | sylancl | |- ( Rel R -> ( Rel R -> ( R |` U. U. R ) = R ) ) |
| 18 | 17 | pm2.43i | |- ( Rel R -> ( R |` U. U. R ) = R ) |