This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Composition with the identity relation restricted to a relation's field. (Contributed by FL, 2-May-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | relcoi2 | |- ( Rel R -> ( ( _I |` U. U. R ) o. R ) = R ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmrnssfld | |- ( dom R u. ran R ) C_ U. U. R |
|
| 2 | unss | |- ( ( dom R C_ U. U. R /\ ran R C_ U. U. R ) <-> ( dom R u. ran R ) C_ U. U. R ) |
|
| 3 | simpr | |- ( ( dom R C_ U. U. R /\ ran R C_ U. U. R ) -> ran R C_ U. U. R ) |
|
| 4 | 2 3 | sylbir | |- ( ( dom R u. ran R ) C_ U. U. R -> ran R C_ U. U. R ) |
| 5 | cores | |- ( ran R C_ U. U. R -> ( ( _I |` U. U. R ) o. R ) = ( _I o. R ) ) |
|
| 6 | 1 4 5 | mp2b | |- ( ( _I |` U. U. R ) o. R ) = ( _I o. R ) |
| 7 | coi2 | |- ( Rel R -> ( _I o. R ) = R ) |
|
| 8 | 6 7 | eqtrid | |- ( Rel R -> ( ( _I |` U. U. R ) o. R ) = R ) |