This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The double union of a relation is its field. (Contributed by NM, 17-Sep-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | relfld | |- ( Rel R -> U. U. R = ( dom R u. ran R ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relssdmrn | |- ( Rel R -> R C_ ( dom R X. ran R ) ) |
|
| 2 | uniss | |- ( R C_ ( dom R X. ran R ) -> U. R C_ U. ( dom R X. ran R ) ) |
|
| 3 | uniss | |- ( U. R C_ U. ( dom R X. ran R ) -> U. U. R C_ U. U. ( dom R X. ran R ) ) |
|
| 4 | 1 2 3 | 3syl | |- ( Rel R -> U. U. R C_ U. U. ( dom R X. ran R ) ) |
| 5 | unixpss | |- U. U. ( dom R X. ran R ) C_ ( dom R u. ran R ) |
|
| 6 | 4 5 | sstrdi | |- ( Rel R -> U. U. R C_ ( dom R u. ran R ) ) |
| 7 | dmrnssfld | |- ( dom R u. ran R ) C_ U. U. R |
|
| 8 | 7 | a1i | |- ( Rel R -> ( dom R u. ran R ) C_ U. U. R ) |
| 9 | 6 8 | eqssd | |- ( Rel R -> U. U. R = ( dom R u. ran R ) ) |