This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Reciprocal expressed with a real denominator. (Contributed by Mario Carneiro, 1-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | recval | |- ( ( A e. CC /\ A =/= 0 ) -> ( 1 / A ) = ( ( * ` A ) / ( ( abs ` A ) ^ 2 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cjcl | |- ( A e. CC -> ( * ` A ) e. CC ) |
|
| 2 | 1 | adantr | |- ( ( A e. CC /\ A =/= 0 ) -> ( * ` A ) e. CC ) |
| 3 | simpl | |- ( ( A e. CC /\ A =/= 0 ) -> A e. CC ) |
|
| 4 | 2 3 | mulcomd | |- ( ( A e. CC /\ A =/= 0 ) -> ( ( * ` A ) x. A ) = ( A x. ( * ` A ) ) ) |
| 5 | absvalsq | |- ( A e. CC -> ( ( abs ` A ) ^ 2 ) = ( A x. ( * ` A ) ) ) |
|
| 6 | 5 | adantr | |- ( ( A e. CC /\ A =/= 0 ) -> ( ( abs ` A ) ^ 2 ) = ( A x. ( * ` A ) ) ) |
| 7 | 4 6 | eqtr4d | |- ( ( A e. CC /\ A =/= 0 ) -> ( ( * ` A ) x. A ) = ( ( abs ` A ) ^ 2 ) ) |
| 8 | abscl | |- ( A e. CC -> ( abs ` A ) e. RR ) |
|
| 9 | 8 | adantr | |- ( ( A e. CC /\ A =/= 0 ) -> ( abs ` A ) e. RR ) |
| 10 | 9 | recnd | |- ( ( A e. CC /\ A =/= 0 ) -> ( abs ` A ) e. CC ) |
| 11 | 10 | sqcld | |- ( ( A e. CC /\ A =/= 0 ) -> ( ( abs ` A ) ^ 2 ) e. CC ) |
| 12 | cjne0 | |- ( A e. CC -> ( A =/= 0 <-> ( * ` A ) =/= 0 ) ) |
|
| 13 | 12 | biimpa | |- ( ( A e. CC /\ A =/= 0 ) -> ( * ` A ) =/= 0 ) |
| 14 | 11 2 3 13 | divmuld | |- ( ( A e. CC /\ A =/= 0 ) -> ( ( ( ( abs ` A ) ^ 2 ) / ( * ` A ) ) = A <-> ( ( * ` A ) x. A ) = ( ( abs ` A ) ^ 2 ) ) ) |
| 15 | 7 14 | mpbird | |- ( ( A e. CC /\ A =/= 0 ) -> ( ( ( abs ` A ) ^ 2 ) / ( * ` A ) ) = A ) |
| 16 | 15 | oveq2d | |- ( ( A e. CC /\ A =/= 0 ) -> ( 1 / ( ( ( abs ` A ) ^ 2 ) / ( * ` A ) ) ) = ( 1 / A ) ) |
| 17 | abs00 | |- ( A e. CC -> ( ( abs ` A ) = 0 <-> A = 0 ) ) |
|
| 18 | 17 | necon3bid | |- ( A e. CC -> ( ( abs ` A ) =/= 0 <-> A =/= 0 ) ) |
| 19 | 18 | biimpar | |- ( ( A e. CC /\ A =/= 0 ) -> ( abs ` A ) =/= 0 ) |
| 20 | sqne0 | |- ( ( abs ` A ) e. CC -> ( ( ( abs ` A ) ^ 2 ) =/= 0 <-> ( abs ` A ) =/= 0 ) ) |
|
| 21 | 10 20 | syl | |- ( ( A e. CC /\ A =/= 0 ) -> ( ( ( abs ` A ) ^ 2 ) =/= 0 <-> ( abs ` A ) =/= 0 ) ) |
| 22 | 19 21 | mpbird | |- ( ( A e. CC /\ A =/= 0 ) -> ( ( abs ` A ) ^ 2 ) =/= 0 ) |
| 23 | 11 2 22 13 | recdivd | |- ( ( A e. CC /\ A =/= 0 ) -> ( 1 / ( ( ( abs ` A ) ^ 2 ) / ( * ` A ) ) ) = ( ( * ` A ) / ( ( abs ` A ) ^ 2 ) ) ) |
| 24 | 16 23 | eqtr3d | |- ( ( A e. CC /\ A =/= 0 ) -> ( 1 / A ) = ( ( * ` A ) / ( ( abs ` A ) ^ 2 ) ) ) |