This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways of saying a relation is symmetric. (Contributed by FL, 31-Aug-2009)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | relcnveq3 | |- ( Rel R -> ( R = `' R <-> A. x A. y ( x R y -> y R x ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqss | |- ( R = `' R <-> ( R C_ `' R /\ `' R C_ R ) ) |
|
| 2 | cnvsym | |- ( `' R C_ R <-> A. x A. y ( x R y -> y R x ) ) |
|
| 3 | 2 | biimpi | |- ( `' R C_ R -> A. x A. y ( x R y -> y R x ) ) |
| 4 | 3 | a1d | |- ( `' R C_ R -> ( Rel R -> A. x A. y ( x R y -> y R x ) ) ) |
| 5 | 4 | adantl | |- ( ( R C_ `' R /\ `' R C_ R ) -> ( Rel R -> A. x A. y ( x R y -> y R x ) ) ) |
| 6 | 5 | com12 | |- ( Rel R -> ( ( R C_ `' R /\ `' R C_ R ) -> A. x A. y ( x R y -> y R x ) ) ) |
| 7 | dfrel2 | |- ( Rel R <-> `' `' R = R ) |
|
| 8 | cnvss | |- ( `' R C_ R -> `' `' R C_ `' R ) |
|
| 9 | sseq1 | |- ( `' `' R = R -> ( `' `' R C_ `' R <-> R C_ `' R ) ) |
|
| 10 | 8 9 | syl5ibcom | |- ( `' R C_ R -> ( `' `' R = R -> R C_ `' R ) ) |
| 11 | 2 10 | sylbir | |- ( A. x A. y ( x R y -> y R x ) -> ( `' `' R = R -> R C_ `' R ) ) |
| 12 | 11 | com12 | |- ( `' `' R = R -> ( A. x A. y ( x R y -> y R x ) -> R C_ `' R ) ) |
| 13 | 7 12 | sylbi | |- ( Rel R -> ( A. x A. y ( x R y -> y R x ) -> R C_ `' R ) ) |
| 14 | 2 | biimpri | |- ( A. x A. y ( x R y -> y R x ) -> `' R C_ R ) |
| 15 | 13 14 | jca2 | |- ( Rel R -> ( A. x A. y ( x R y -> y R x ) -> ( R C_ `' R /\ `' R C_ R ) ) ) |
| 16 | 6 15 | impbid | |- ( Rel R -> ( ( R C_ `' R /\ `' R C_ R ) <-> A. x A. y ( x R y -> y R x ) ) ) |
| 17 | 1 16 | bitrid | |- ( Rel R -> ( R = `' R <-> A. x A. y ( x R y -> y R x ) ) ) |