This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways of saying a relation is symmetric. (Contributed by FL, 31-Aug-2009)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | relcnveq3 | ⊢ ( Rel 𝑅 → ( 𝑅 = ◡ 𝑅 ↔ ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑅 𝑦 → 𝑦 𝑅 𝑥 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqss | ⊢ ( 𝑅 = ◡ 𝑅 ↔ ( 𝑅 ⊆ ◡ 𝑅 ∧ ◡ 𝑅 ⊆ 𝑅 ) ) | |
| 2 | cnvsym | ⊢ ( ◡ 𝑅 ⊆ 𝑅 ↔ ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑅 𝑦 → 𝑦 𝑅 𝑥 ) ) | |
| 3 | 2 | biimpi | ⊢ ( ◡ 𝑅 ⊆ 𝑅 → ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑅 𝑦 → 𝑦 𝑅 𝑥 ) ) |
| 4 | 3 | a1d | ⊢ ( ◡ 𝑅 ⊆ 𝑅 → ( Rel 𝑅 → ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑅 𝑦 → 𝑦 𝑅 𝑥 ) ) ) |
| 5 | 4 | adantl | ⊢ ( ( 𝑅 ⊆ ◡ 𝑅 ∧ ◡ 𝑅 ⊆ 𝑅 ) → ( Rel 𝑅 → ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑅 𝑦 → 𝑦 𝑅 𝑥 ) ) ) |
| 6 | 5 | com12 | ⊢ ( Rel 𝑅 → ( ( 𝑅 ⊆ ◡ 𝑅 ∧ ◡ 𝑅 ⊆ 𝑅 ) → ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑅 𝑦 → 𝑦 𝑅 𝑥 ) ) ) |
| 7 | dfrel2 | ⊢ ( Rel 𝑅 ↔ ◡ ◡ 𝑅 = 𝑅 ) | |
| 8 | cnvss | ⊢ ( ◡ 𝑅 ⊆ 𝑅 → ◡ ◡ 𝑅 ⊆ ◡ 𝑅 ) | |
| 9 | sseq1 | ⊢ ( ◡ ◡ 𝑅 = 𝑅 → ( ◡ ◡ 𝑅 ⊆ ◡ 𝑅 ↔ 𝑅 ⊆ ◡ 𝑅 ) ) | |
| 10 | 8 9 | syl5ibcom | ⊢ ( ◡ 𝑅 ⊆ 𝑅 → ( ◡ ◡ 𝑅 = 𝑅 → 𝑅 ⊆ ◡ 𝑅 ) ) |
| 11 | 2 10 | sylbir | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑅 𝑦 → 𝑦 𝑅 𝑥 ) → ( ◡ ◡ 𝑅 = 𝑅 → 𝑅 ⊆ ◡ 𝑅 ) ) |
| 12 | 11 | com12 | ⊢ ( ◡ ◡ 𝑅 = 𝑅 → ( ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑅 𝑦 → 𝑦 𝑅 𝑥 ) → 𝑅 ⊆ ◡ 𝑅 ) ) |
| 13 | 7 12 | sylbi | ⊢ ( Rel 𝑅 → ( ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑅 𝑦 → 𝑦 𝑅 𝑥 ) → 𝑅 ⊆ ◡ 𝑅 ) ) |
| 14 | 2 | biimpri | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑅 𝑦 → 𝑦 𝑅 𝑥 ) → ◡ 𝑅 ⊆ 𝑅 ) |
| 15 | 13 14 | jca2 | ⊢ ( Rel 𝑅 → ( ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑅 𝑦 → 𝑦 𝑅 𝑥 ) → ( 𝑅 ⊆ ◡ 𝑅 ∧ ◡ 𝑅 ⊆ 𝑅 ) ) ) |
| 16 | 6 15 | impbid | ⊢ ( Rel 𝑅 → ( ( 𝑅 ⊆ ◡ 𝑅 ∧ ◡ 𝑅 ⊆ 𝑅 ) ↔ ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑅 𝑦 → 𝑦 𝑅 𝑥 ) ) ) |
| 17 | 1 16 | bitrid | ⊢ ( Rel 𝑅 → ( 𝑅 = ◡ 𝑅 ↔ ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑅 𝑦 → 𝑦 𝑅 𝑥 ) ) ) |