This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Refinement is transitive. (Contributed by Jeff Hankins, 18-Jan-2010) (Revised by Thierry Arnoux, 3-Feb-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | reftr | |- ( ( A Ref B /\ B Ref C ) -> A Ref C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- U. B = U. B |
|
| 2 | eqid | |- U. C = U. C |
|
| 3 | 1 2 | refbas | |- ( B Ref C -> U. C = U. B ) |
| 4 | eqid | |- U. A = U. A |
|
| 5 | 4 1 | refbas | |- ( A Ref B -> U. B = U. A ) |
| 6 | 3 5 | sylan9eqr | |- ( ( A Ref B /\ B Ref C ) -> U. C = U. A ) |
| 7 | refssex | |- ( ( A Ref B /\ x e. A ) -> E. y e. B x C_ y ) |
|
| 8 | 7 | ex | |- ( A Ref B -> ( x e. A -> E. y e. B x C_ y ) ) |
| 9 | 8 | adantr | |- ( ( A Ref B /\ B Ref C ) -> ( x e. A -> E. y e. B x C_ y ) ) |
| 10 | refssex | |- ( ( B Ref C /\ y e. B ) -> E. z e. C y C_ z ) |
|
| 11 | 10 | ad2ant2lr | |- ( ( ( A Ref B /\ B Ref C ) /\ ( y e. B /\ x C_ y ) ) -> E. z e. C y C_ z ) |
| 12 | sstr2 | |- ( x C_ y -> ( y C_ z -> x C_ z ) ) |
|
| 13 | 12 | reximdv | |- ( x C_ y -> ( E. z e. C y C_ z -> E. z e. C x C_ z ) ) |
| 14 | 13 | ad2antll | |- ( ( ( A Ref B /\ B Ref C ) /\ ( y e. B /\ x C_ y ) ) -> ( E. z e. C y C_ z -> E. z e. C x C_ z ) ) |
| 15 | 11 14 | mpd | |- ( ( ( A Ref B /\ B Ref C ) /\ ( y e. B /\ x C_ y ) ) -> E. z e. C x C_ z ) |
| 16 | 15 | rexlimdvaa | |- ( ( A Ref B /\ B Ref C ) -> ( E. y e. B x C_ y -> E. z e. C x C_ z ) ) |
| 17 | 9 16 | syld | |- ( ( A Ref B /\ B Ref C ) -> ( x e. A -> E. z e. C x C_ z ) ) |
| 18 | 17 | ralrimiv | |- ( ( A Ref B /\ B Ref C ) -> A. x e. A E. z e. C x C_ z ) |
| 19 | refrel | |- Rel Ref |
|
| 20 | 19 | brrelex1i | |- ( A Ref B -> A e. _V ) |
| 21 | 20 | adantr | |- ( ( A Ref B /\ B Ref C ) -> A e. _V ) |
| 22 | 4 2 | isref | |- ( A e. _V -> ( A Ref C <-> ( U. C = U. A /\ A. x e. A E. z e. C x C_ z ) ) ) |
| 23 | 21 22 | syl | |- ( ( A Ref B /\ B Ref C ) -> ( A Ref C <-> ( U. C = U. A /\ A. x e. A E. z e. C x C_ z ) ) ) |
| 24 | 6 18 23 | mpbir2and | |- ( ( A Ref B /\ B Ref C ) -> A Ref C ) |