This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Every set in a refinement has a superset in the original cover. (Contributed by Jeff Hankins, 18-Jan-2010) (Revised by Thierry Arnoux, 3-Feb-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | refssex | |- ( ( A Ref B /\ S e. A ) -> E. x e. B S C_ x ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | refrel | |- Rel Ref |
|
| 2 | 1 | brrelex1i | |- ( A Ref B -> A e. _V ) |
| 3 | eqid | |- U. A = U. A |
|
| 4 | eqid | |- U. B = U. B |
|
| 5 | 3 4 | isref | |- ( A e. _V -> ( A Ref B <-> ( U. B = U. A /\ A. y e. A E. x e. B y C_ x ) ) ) |
| 6 | 5 | simplbda | |- ( ( A e. _V /\ A Ref B ) -> A. y e. A E. x e. B y C_ x ) |
| 7 | 2 6 | mpancom | |- ( A Ref B -> A. y e. A E. x e. B y C_ x ) |
| 8 | sseq1 | |- ( y = S -> ( y C_ x <-> S C_ x ) ) |
|
| 9 | 8 | rexbidv | |- ( y = S -> ( E. x e. B y C_ x <-> E. x e. B S C_ x ) ) |
| 10 | 9 | rspccv | |- ( A. y e. A E. x e. B y C_ x -> ( S e. A -> E. x e. B S C_ x ) ) |
| 11 | 7 10 | syl | |- ( A Ref B -> ( S e. A -> E. x e. B S C_ x ) ) |
| 12 | 11 | imp | |- ( ( A Ref B /\ S e. A ) -> E. x e. B S C_ x ) |