This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subcover is a refinement of the original cover. (Contributed by Jeff Hankins, 18-Jan-2010) (Revised by Thierry Arnoux, 3-Feb-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ssref.1 | |- X = U. A |
|
| ssref.2 | |- Y = U. B |
||
| Assertion | ssref | |- ( ( A e. C /\ A C_ B /\ X = Y ) -> A Ref B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssref.1 | |- X = U. A |
|
| 2 | ssref.2 | |- Y = U. B |
|
| 3 | eqcom | |- ( X = Y <-> Y = X ) |
|
| 4 | 3 | biimpi | |- ( X = Y -> Y = X ) |
| 5 | 4 | 3ad2ant3 | |- ( ( A e. C /\ A C_ B /\ X = Y ) -> Y = X ) |
| 6 | ssel2 | |- ( ( A C_ B /\ x e. A ) -> x e. B ) |
|
| 7 | 6 | 3ad2antl2 | |- ( ( ( A e. C /\ A C_ B /\ X = Y ) /\ x e. A ) -> x e. B ) |
| 8 | ssid | |- x C_ x |
|
| 9 | sseq2 | |- ( y = x -> ( x C_ y <-> x C_ x ) ) |
|
| 10 | 9 | rspcev | |- ( ( x e. B /\ x C_ x ) -> E. y e. B x C_ y ) |
| 11 | 7 8 10 | sylancl | |- ( ( ( A e. C /\ A C_ B /\ X = Y ) /\ x e. A ) -> E. y e. B x C_ y ) |
| 12 | 11 | ralrimiva | |- ( ( A e. C /\ A C_ B /\ X = Y ) -> A. x e. A E. y e. B x C_ y ) |
| 13 | 1 2 | isref | |- ( A e. C -> ( A Ref B <-> ( Y = X /\ A. x e. A E. y e. B x C_ y ) ) ) |
| 14 | 13 | 3ad2ant1 | |- ( ( A e. C /\ A C_ B /\ X = Y ) -> ( A Ref B <-> ( Y = X /\ A. x e. A E. y e. B x C_ y ) ) ) |
| 15 | 5 12 14 | mpbir2and | |- ( ( A e. C /\ A C_ B /\ X = Y ) -> A Ref B ) |