This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Transfer universal quantification from a variable x to another variable y contained in expression A . (Contributed by NM, 15-Aug-2014) (Proof shortened by Mario Carneiro, 19-Nov-2016) (Proof shortened by JJ, 7-Aug-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ralxfrd.1 | |- ( ( ph /\ y e. C ) -> A e. B ) |
|
| ralxfrd.2 | |- ( ( ph /\ x e. B ) -> E. y e. C x = A ) |
||
| ralxfrd.3 | |- ( ( ph /\ x = A ) -> ( ps <-> ch ) ) |
||
| Assertion | ralxfrd | |- ( ph -> ( A. x e. B ps <-> A. y e. C ch ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralxfrd.1 | |- ( ( ph /\ y e. C ) -> A e. B ) |
|
| 2 | ralxfrd.2 | |- ( ( ph /\ x e. B ) -> E. y e. C x = A ) |
|
| 3 | ralxfrd.3 | |- ( ( ph /\ x = A ) -> ( ps <-> ch ) ) |
|
| 4 | 3 | adantlr | |- ( ( ( ph /\ y e. C ) /\ x = A ) -> ( ps <-> ch ) ) |
| 5 | 1 4 | rspcdv | |- ( ( ph /\ y e. C ) -> ( A. x e. B ps -> ch ) ) |
| 6 | 5 | ralrimdva | |- ( ph -> ( A. x e. B ps -> A. y e. C ch ) ) |
| 7 | r19.29 | |- ( ( A. y e. C ch /\ E. y e. C x = A ) -> E. y e. C ( ch /\ x = A ) ) |
|
| 8 | 3 | exbiri | |- ( ph -> ( x = A -> ( ch -> ps ) ) ) |
| 9 | 8 | impcomd | |- ( ph -> ( ( ch /\ x = A ) -> ps ) ) |
| 10 | 9 | rexlimdvw | |- ( ph -> ( E. y e. C ( ch /\ x = A ) -> ps ) ) |
| 11 | 7 10 | syl5 | |- ( ph -> ( ( A. y e. C ch /\ E. y e. C x = A ) -> ps ) ) |
| 12 | 11 | adantr | |- ( ( ph /\ x e. B ) -> ( ( A. y e. C ch /\ E. y e. C x = A ) -> ps ) ) |
| 13 | 2 12 | mpan2d | |- ( ( ph /\ x e. B ) -> ( A. y e. C ch -> ps ) ) |
| 14 | 13 | ralrimdva | |- ( ph -> ( A. y e. C ch -> A. x e. B ps ) ) |
| 15 | 6 14 | impbid | |- ( ph -> ( A. x e. B ps <-> A. y e. C ch ) ) |