This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Characterization of the inclusion of a singleton in a class. (Contributed by BJ, 1-Jan-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | snssb | |- ( { A } C_ B <-> ( A e. _V -> A e. B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ss | |- ( { A } C_ B <-> A. x ( x e. { A } -> x e. B ) ) |
|
| 2 | velsn | |- ( x e. { A } <-> x = A ) |
|
| 3 | 2 | imbi1i | |- ( ( x e. { A } -> x e. B ) <-> ( x = A -> x e. B ) ) |
| 4 | 3 | albii | |- ( A. x ( x e. { A } -> x e. B ) <-> A. x ( x = A -> x e. B ) ) |
| 5 | eleq1 | |- ( x = A -> ( x e. B <-> A e. B ) ) |
|
| 6 | 5 | pm5.74i | |- ( ( x = A -> x e. B ) <-> ( x = A -> A e. B ) ) |
| 7 | 6 | albii | |- ( A. x ( x = A -> x e. B ) <-> A. x ( x = A -> A e. B ) ) |
| 8 | 19.23v | |- ( A. x ( x = A -> A e. B ) <-> ( E. x x = A -> A e. B ) ) |
|
| 9 | isset | |- ( A e. _V <-> E. x x = A ) |
|
| 10 | 9 | bicomi | |- ( E. x x = A <-> A e. _V ) |
| 11 | 10 | imbi1i | |- ( ( E. x x = A -> A e. B ) <-> ( A e. _V -> A e. B ) ) |
| 12 | 7 8 11 | 3bitri | |- ( A. x ( x = A -> x e. B ) <-> ( A e. _V -> A e. B ) ) |
| 13 | 1 4 12 | 3bitri | |- ( { A } C_ B <-> ( A e. _V -> A e. B ) ) |