This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: For any element in the range of a function there is an element in the domain of the function for which the function value is the element of the range. (Contributed by Alexander van der Vekens, 8-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elrnrexdm | |- ( Fun F -> ( Y e. ran F -> E. x e. dom F Y = ( F ` x ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqidd | |- ( Y e. ran F -> Y = Y ) |
|
| 2 | 1 | ancli | |- ( Y e. ran F -> ( Y e. ran F /\ Y = Y ) ) |
| 3 | 2 | adantl | |- ( ( Fun F /\ Y e. ran F ) -> ( Y e. ran F /\ Y = Y ) ) |
| 4 | eqeq2 | |- ( y = Y -> ( Y = y <-> Y = Y ) ) |
|
| 5 | 4 | rspcev | |- ( ( Y e. ran F /\ Y = Y ) -> E. y e. ran F Y = y ) |
| 6 | 3 5 | syl | |- ( ( Fun F /\ Y e. ran F ) -> E. y e. ran F Y = y ) |
| 7 | 6 | ex | |- ( Fun F -> ( Y e. ran F -> E. y e. ran F Y = y ) ) |
| 8 | funfn | |- ( Fun F <-> F Fn dom F ) |
|
| 9 | eqeq2 | |- ( y = ( F ` x ) -> ( Y = y <-> Y = ( F ` x ) ) ) |
|
| 10 | 9 | rexrn | |- ( F Fn dom F -> ( E. y e. ran F Y = y <-> E. x e. dom F Y = ( F ` x ) ) ) |
| 11 | 8 10 | sylbi | |- ( Fun F -> ( E. y e. ran F Y = y <-> E. x e. dom F Y = ( F ` x ) ) ) |
| 12 | 7 11 | sylibd | |- ( Fun F -> ( Y e. ran F -> E. x e. dom F Y = ( F ` x ) ) ) |