This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Theorem 19.35 of Margaris p. 90. This theorem is useful for moving an implication (in the form of the right-hand side) into the scope of a single existential quantifier. (Contributed by NM, 12-Mar-1993) (Proof shortened by Wolf Lammen, 27-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 19.35 | |- ( E. x ( ph -> ps ) <-> ( A. x ph -> E. x ps ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.27 | |- ( ph -> ( ( ph -> ps ) -> ps ) ) |
|
| 2 | 1 | aleximi | |- ( A. x ph -> ( E. x ( ph -> ps ) -> E. x ps ) ) |
| 3 | 2 | com12 | |- ( E. x ( ph -> ps ) -> ( A. x ph -> E. x ps ) ) |
| 4 | exnal | |- ( E. x -. ph <-> -. A. x ph ) |
|
| 5 | pm2.21 | |- ( -. ph -> ( ph -> ps ) ) |
|
| 6 | 5 | eximi | |- ( E. x -. ph -> E. x ( ph -> ps ) ) |
| 7 | 4 6 | sylbir | |- ( -. A. x ph -> E. x ( ph -> ps ) ) |
| 8 | exa1 | |- ( E. x ps -> E. x ( ph -> ps ) ) |
|
| 9 | 7 8 | ja | |- ( ( A. x ph -> E. x ps ) -> E. x ( ph -> ps ) ) |
| 10 | 3 9 | impbii | |- ( E. x ( ph -> ps ) <-> ( A. x ph -> E. x ps ) ) |