This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Theorem 19.29 of Margaris p. 90 with two restricted quantifiers, deduction version. (Contributed by Thierry Arnoux, 30-Jan-2017) (Proof shortened by Wolf Lammen, 4-Nov-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | r19.29d2r.1 | |- ( ph -> A. x e. A A. y e. B ps ) |
|
| r19.29d2r.2 | |- ( ph -> E. x e. A E. y e. B ch ) |
||
| Assertion | r19.29d2r | |- ( ph -> E. x e. A E. y e. B ( ps /\ ch ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r19.29d2r.1 | |- ( ph -> A. x e. A A. y e. B ps ) |
|
| 2 | r19.29d2r.2 | |- ( ph -> E. x e. A E. y e. B ch ) |
|
| 3 | 1 2 | jca | |- ( ph -> ( A. x e. A A. y e. B ps /\ E. x e. A E. y e. B ch ) ) |
| 4 | 2r19.29 | |- ( ( A. x e. A A. y e. B ps /\ E. x e. A E. y e. B ch ) -> E. x e. A E. y e. B ( ps /\ ch ) ) |
|
| 5 | 3 4 | syl | |- ( ph -> E. x e. A E. y e. B ( ps /\ ch ) ) |