This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Restricted quantification
Restricted universal and existential quantification
r19.29d2r
Metamath Proof Explorer
Description: Theorem 19.29 of Margaris p. 90 with two restricted quantifiers,
deduction version. (Contributed by Thierry Arnoux , 30-Jan-2017)
(Proof shortened by Wolf Lammen , 4-Nov-2024)
Ref
Expression
Hypotheses
r19.29d2r.1
⊢ φ → ∀ x ∈ A ∀ y ∈ B ψ
r19.29d2r.2
⊢ φ → ∃ x ∈ A ∃ y ∈ B χ
Assertion
r19.29d2r
⊢ φ → ∃ x ∈ A ∃ y ∈ B ψ ∧ χ
Proof
Step
Hyp
Ref
Expression
1
r19.29d2r.1
⊢ φ → ∀ x ∈ A ∀ y ∈ B ψ
2
r19.29d2r.2
⊢ φ → ∃ x ∈ A ∃ y ∈ B χ
3
1 2
jca
⊢ φ → ∀ x ∈ A ∀ y ∈ B ψ ∧ ∃ x ∈ A ∃ y ∈ B χ
4
2r19.29
⊢ ∀ x ∈ A ∀ y ∈ B ψ ∧ ∃ x ∈ A ∃ y ∈ B χ → ∃ x ∈ A ∃ y ∈ B ψ ∧ χ
5
3 4
syl
⊢ φ → ∃ x ∈ A ∃ y ∈ B ψ ∧ χ