This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restricted quantifier version of Theorem 19.28 of Margaris p. 90. It is valid only when the domain of quantification is not empty. (Contributed by NM, 26-Oct-2010)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | r19.3rz.1 | |- F/ x ph |
|
| Assertion | r19.28z | |- ( A =/= (/) -> ( A. x e. A ( ph /\ ps ) <-> ( ph /\ A. x e. A ps ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r19.3rz.1 | |- F/ x ph |
|
| 2 | r19.26 | |- ( A. x e. A ( ph /\ ps ) <-> ( A. x e. A ph /\ A. x e. A ps ) ) |
|
| 3 | 1 | r19.3rz | |- ( A =/= (/) -> ( ph <-> A. x e. A ph ) ) |
| 4 | 3 | anbi1d | |- ( A =/= (/) -> ( ( ph /\ A. x e. A ps ) <-> ( A. x e. A ph /\ A. x e. A ps ) ) ) |
| 5 | 2 4 | bitr4id | |- ( A =/= (/) -> ( A. x e. A ( ph /\ ps ) <-> ( ph /\ A. x e. A ps ) ) ) |