This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restricted quantification of wff not containing quantified variable. (Contributed by FL, 3-Jan-2008)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | r19.3rz.1 | |- F/ x ph |
|
| Assertion | r19.3rz | |- ( A =/= (/) -> ( ph <-> A. x e. A ph ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r19.3rz.1 | |- F/ x ph |
|
| 2 | n0 | |- ( A =/= (/) <-> E. x x e. A ) |
|
| 3 | biimt | |- ( E. x x e. A -> ( ph <-> ( E. x x e. A -> ph ) ) ) |
|
| 4 | 2 3 | sylbi | |- ( A =/= (/) -> ( ph <-> ( E. x x e. A -> ph ) ) ) |
| 5 | df-ral | |- ( A. x e. A ph <-> A. x ( x e. A -> ph ) ) |
|
| 6 | 1 | 19.23 | |- ( A. x ( x e. A -> ph ) <-> ( E. x x e. A -> ph ) ) |
| 7 | 5 6 | bitri | |- ( A. x e. A ph <-> ( E. x x e. A -> ph ) ) |
| 8 | 4 7 | bitr4di | |- ( A =/= (/) -> ( ph <-> A. x e. A ph ) ) |