This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of an operation defined on a quotient structure. (Contributed by Mario Carneiro, 24-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | qusaddf.u | |- ( ph -> U = ( R /s .~ ) ) |
|
| qusaddf.v | |- ( ph -> V = ( Base ` R ) ) |
||
| qusaddf.r | |- ( ph -> .~ Er V ) |
||
| qusaddf.z | |- ( ph -> R e. Z ) |
||
| qusaddf.e | |- ( ph -> ( ( a .~ p /\ b .~ q ) -> ( a .x. b ) .~ ( p .x. q ) ) ) |
||
| qusaddf.c | |- ( ( ph /\ ( p e. V /\ q e. V ) ) -> ( p .x. q ) e. V ) |
||
| qusaddflem.f | |- F = ( x e. V |-> [ x ] .~ ) |
||
| qusaddflem.g | |- ( ph -> .xb = U_ p e. V U_ q e. V { <. <. ( F ` p ) , ( F ` q ) >. , ( F ` ( p .x. q ) ) >. } ) |
||
| Assertion | qusaddvallem | |- ( ( ph /\ X e. V /\ Y e. V ) -> ( [ X ] .~ .xb [ Y ] .~ ) = [ ( X .x. Y ) ] .~ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qusaddf.u | |- ( ph -> U = ( R /s .~ ) ) |
|
| 2 | qusaddf.v | |- ( ph -> V = ( Base ` R ) ) |
|
| 3 | qusaddf.r | |- ( ph -> .~ Er V ) |
|
| 4 | qusaddf.z | |- ( ph -> R e. Z ) |
|
| 5 | qusaddf.e | |- ( ph -> ( ( a .~ p /\ b .~ q ) -> ( a .x. b ) .~ ( p .x. q ) ) ) |
|
| 6 | qusaddf.c | |- ( ( ph /\ ( p e. V /\ q e. V ) ) -> ( p .x. q ) e. V ) |
|
| 7 | qusaddflem.f | |- F = ( x e. V |-> [ x ] .~ ) |
|
| 8 | qusaddflem.g | |- ( ph -> .xb = U_ p e. V U_ q e. V { <. <. ( F ` p ) , ( F ` q ) >. , ( F ` ( p .x. q ) ) >. } ) |
|
| 9 | fvex | |- ( Base ` R ) e. _V |
|
| 10 | 2 9 | eqeltrdi | |- ( ph -> V e. _V ) |
| 11 | erex | |- ( .~ Er V -> ( V e. _V -> .~ e. _V ) ) |
|
| 12 | 3 10 11 | sylc | |- ( ph -> .~ e. _V ) |
| 13 | 1 2 7 12 4 | quslem | |- ( ph -> F : V -onto-> ( V /. .~ ) ) |
| 14 | 3 10 7 6 5 | ercpbl | |- ( ( ph /\ ( a e. V /\ b e. V ) /\ ( p e. V /\ q e. V ) ) -> ( ( ( F ` a ) = ( F ` p ) /\ ( F ` b ) = ( F ` q ) ) -> ( F ` ( a .x. b ) ) = ( F ` ( p .x. q ) ) ) ) |
| 15 | 13 14 8 | imasaddvallem | |- ( ( ph /\ X e. V /\ Y e. V ) -> ( ( F ` X ) .xb ( F ` Y ) ) = ( F ` ( X .x. Y ) ) ) |
| 16 | 3 | 3ad2ant1 | |- ( ( ph /\ X e. V /\ Y e. V ) -> .~ Er V ) |
| 17 | 10 | 3ad2ant1 | |- ( ( ph /\ X e. V /\ Y e. V ) -> V e. _V ) |
| 18 | 16 17 7 | divsfval | |- ( ( ph /\ X e. V /\ Y e. V ) -> ( F ` X ) = [ X ] .~ ) |
| 19 | 16 17 7 | divsfval | |- ( ( ph /\ X e. V /\ Y e. V ) -> ( F ` Y ) = [ Y ] .~ ) |
| 20 | 18 19 | oveq12d | |- ( ( ph /\ X e. V /\ Y e. V ) -> ( ( F ` X ) .xb ( F ` Y ) ) = ( [ X ] .~ .xb [ Y ] .~ ) ) |
| 21 | 16 17 7 | divsfval | |- ( ( ph /\ X e. V /\ Y e. V ) -> ( F ` ( X .x. Y ) ) = [ ( X .x. Y ) ] .~ ) |
| 22 | 15 20 21 | 3eqtr3d | |- ( ( ph /\ X e. V /\ Y e. V ) -> ( [ X ] .~ .xb [ Y ] .~ ) = [ ( X .x. Y ) ] .~ ) |