This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Members of a quotient set do not overlap. (Contributed by Rodolfo Medina, 12-Oct-2010) (Revised by Mario Carneiro, 11-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | qsdisj.1 | |- ( ph -> R Er X ) |
|
| qsdisj.2 | |- ( ph -> B e. ( A /. R ) ) |
||
| qsdisj.3 | |- ( ph -> C e. ( A /. R ) ) |
||
| Assertion | qsdisj | |- ( ph -> ( B = C \/ ( B i^i C ) = (/) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qsdisj.1 | |- ( ph -> R Er X ) |
|
| 2 | qsdisj.2 | |- ( ph -> B e. ( A /. R ) ) |
|
| 3 | qsdisj.3 | |- ( ph -> C e. ( A /. R ) ) |
|
| 4 | eqid | |- ( A /. R ) = ( A /. R ) |
|
| 5 | eqeq1 | |- ( [ x ] R = B -> ( [ x ] R = C <-> B = C ) ) |
|
| 6 | ineq1 | |- ( [ x ] R = B -> ( [ x ] R i^i C ) = ( B i^i C ) ) |
|
| 7 | 6 | eqeq1d | |- ( [ x ] R = B -> ( ( [ x ] R i^i C ) = (/) <-> ( B i^i C ) = (/) ) ) |
| 8 | 5 7 | orbi12d | |- ( [ x ] R = B -> ( ( [ x ] R = C \/ ( [ x ] R i^i C ) = (/) ) <-> ( B = C \/ ( B i^i C ) = (/) ) ) ) |
| 9 | eqeq2 | |- ( [ y ] R = C -> ( [ x ] R = [ y ] R <-> [ x ] R = C ) ) |
|
| 10 | ineq2 | |- ( [ y ] R = C -> ( [ x ] R i^i [ y ] R ) = ( [ x ] R i^i C ) ) |
|
| 11 | 10 | eqeq1d | |- ( [ y ] R = C -> ( ( [ x ] R i^i [ y ] R ) = (/) <-> ( [ x ] R i^i C ) = (/) ) ) |
| 12 | 9 11 | orbi12d | |- ( [ y ] R = C -> ( ( [ x ] R = [ y ] R \/ ( [ x ] R i^i [ y ] R ) = (/) ) <-> ( [ x ] R = C \/ ( [ x ] R i^i C ) = (/) ) ) ) |
| 13 | 1 | ad2antrr | |- ( ( ( ph /\ x e. A ) /\ y e. A ) -> R Er X ) |
| 14 | erdisj | |- ( R Er X -> ( [ x ] R = [ y ] R \/ ( [ x ] R i^i [ y ] R ) = (/) ) ) |
|
| 15 | 13 14 | syl | |- ( ( ( ph /\ x e. A ) /\ y e. A ) -> ( [ x ] R = [ y ] R \/ ( [ x ] R i^i [ y ] R ) = (/) ) ) |
| 16 | 4 12 15 | ectocld | |- ( ( ( ph /\ x e. A ) /\ C e. ( A /. R ) ) -> ( [ x ] R = C \/ ( [ x ] R i^i C ) = (/) ) ) |
| 17 | 3 16 | mpidan | |- ( ( ph /\ x e. A ) -> ( [ x ] R = C \/ ( [ x ] R i^i C ) = (/) ) ) |
| 18 | 4 8 17 | ectocld | |- ( ( ph /\ B e. ( A /. R ) ) -> ( B = C \/ ( B i^i C ) = (/) ) ) |
| 19 | 2 18 | mpdan | |- ( ph -> ( B = C \/ ( B i^i C ) = (/) ) ) |