This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Property of a projective subspace. (Contributed by NM, 13-Jan-2012) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | psubspset.l | |- .<_ = ( le ` K ) |
|
| psubspset.j | |- .\/ = ( join ` K ) |
||
| psubspset.a | |- A = ( Atoms ` K ) |
||
| psubspset.s | |- S = ( PSubSp ` K ) |
||
| Assertion | psubspi2N | |- ( ( ( K e. D /\ X e. S /\ P e. A ) /\ ( Q e. X /\ R e. X /\ P .<_ ( Q .\/ R ) ) ) -> P e. X ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psubspset.l | |- .<_ = ( le ` K ) |
|
| 2 | psubspset.j | |- .\/ = ( join ` K ) |
|
| 3 | psubspset.a | |- A = ( Atoms ` K ) |
|
| 4 | psubspset.s | |- S = ( PSubSp ` K ) |
|
| 5 | oveq1 | |- ( q = Q -> ( q .\/ r ) = ( Q .\/ r ) ) |
|
| 6 | 5 | breq2d | |- ( q = Q -> ( P .<_ ( q .\/ r ) <-> P .<_ ( Q .\/ r ) ) ) |
| 7 | oveq2 | |- ( r = R -> ( Q .\/ r ) = ( Q .\/ R ) ) |
|
| 8 | 7 | breq2d | |- ( r = R -> ( P .<_ ( Q .\/ r ) <-> P .<_ ( Q .\/ R ) ) ) |
| 9 | 6 8 | rspc2ev | |- ( ( Q e. X /\ R e. X /\ P .<_ ( Q .\/ R ) ) -> E. q e. X E. r e. X P .<_ ( q .\/ r ) ) |
| 10 | 1 2 3 4 | psubspi | |- ( ( ( K e. D /\ X e. S /\ P e. A ) /\ E. q e. X E. r e. X P .<_ ( q .\/ r ) ) -> P e. X ) |
| 11 | 9 10 | sylan2 | |- ( ( ( K e. D /\ X e. S /\ P e. A ) /\ ( Q e. X /\ R e. X /\ P .<_ ( Q .\/ R ) ) ) -> P e. X ) |