This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The multiplication operation of the multivariate power series structure. (Contributed by Mario Carneiro, 28-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | psrmulr.s | |- S = ( I mPwSer R ) |
|
| psrmulr.b | |- B = ( Base ` S ) |
||
| psrmulr.m | |- .x. = ( .r ` R ) |
||
| psrmulr.t | |- .xb = ( .r ` S ) |
||
| psrmulr.d | |- D = { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |
||
| psrmulfval.i | |- ( ph -> F e. B ) |
||
| psrmulfval.r | |- ( ph -> G e. B ) |
||
| Assertion | psrmulfval | |- ( ph -> ( F .xb G ) = ( k e. D |-> ( R gsum ( x e. { y e. D | y oR <_ k } |-> ( ( F ` x ) .x. ( G ` ( k oF - x ) ) ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psrmulr.s | |- S = ( I mPwSer R ) |
|
| 2 | psrmulr.b | |- B = ( Base ` S ) |
|
| 3 | psrmulr.m | |- .x. = ( .r ` R ) |
|
| 4 | psrmulr.t | |- .xb = ( .r ` S ) |
|
| 5 | psrmulr.d | |- D = { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |
|
| 6 | psrmulfval.i | |- ( ph -> F e. B ) |
|
| 7 | psrmulfval.r | |- ( ph -> G e. B ) |
|
| 8 | fveq1 | |- ( f = F -> ( f ` x ) = ( F ` x ) ) |
|
| 9 | fveq1 | |- ( g = G -> ( g ` ( k oF - x ) ) = ( G ` ( k oF - x ) ) ) |
|
| 10 | 8 9 | oveqan12d | |- ( ( f = F /\ g = G ) -> ( ( f ` x ) .x. ( g ` ( k oF - x ) ) ) = ( ( F ` x ) .x. ( G ` ( k oF - x ) ) ) ) |
| 11 | 10 | mpteq2dv | |- ( ( f = F /\ g = G ) -> ( x e. { y e. D | y oR <_ k } |-> ( ( f ` x ) .x. ( g ` ( k oF - x ) ) ) ) = ( x e. { y e. D | y oR <_ k } |-> ( ( F ` x ) .x. ( G ` ( k oF - x ) ) ) ) ) |
| 12 | 11 | oveq2d | |- ( ( f = F /\ g = G ) -> ( R gsum ( x e. { y e. D | y oR <_ k } |-> ( ( f ` x ) .x. ( g ` ( k oF - x ) ) ) ) ) = ( R gsum ( x e. { y e. D | y oR <_ k } |-> ( ( F ` x ) .x. ( G ` ( k oF - x ) ) ) ) ) ) |
| 13 | 12 | mpteq2dv | |- ( ( f = F /\ g = G ) -> ( k e. D |-> ( R gsum ( x e. { y e. D | y oR <_ k } |-> ( ( f ` x ) .x. ( g ` ( k oF - x ) ) ) ) ) ) = ( k e. D |-> ( R gsum ( x e. { y e. D | y oR <_ k } |-> ( ( F ` x ) .x. ( G ` ( k oF - x ) ) ) ) ) ) ) |
| 14 | 1 2 3 4 5 | psrmulr | |- .xb = ( f e. B , g e. B |-> ( k e. D |-> ( R gsum ( x e. { y e. D | y oR <_ k } |-> ( ( f ` x ) .x. ( g ` ( k oF - x ) ) ) ) ) ) ) |
| 15 | ovex | |- ( NN0 ^m I ) e. _V |
|
| 16 | 5 15 | rabex2 | |- D e. _V |
| 17 | 16 | mptex | |- ( k e. D |-> ( R gsum ( x e. { y e. D | y oR <_ k } |-> ( ( F ` x ) .x. ( G ` ( k oF - x ) ) ) ) ) ) e. _V |
| 18 | 13 14 17 | ovmpoa | |- ( ( F e. B /\ G e. B ) -> ( F .xb G ) = ( k e. D |-> ( R gsum ( x e. { y e. D | y oR <_ k } |-> ( ( F ` x ) .x. ( G ` ( k oF - x ) ) ) ) ) ) ) |
| 19 | 6 7 18 | syl2anc | |- ( ph -> ( F .xb G ) = ( k e. D |-> ( R gsum ( x e. { y e. D | y oR <_ k } |-> ( ( F ` x ) .x. ( G ` ( k oF - x ) ) ) ) ) ) ) |