This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define a function which takes the value 1 for even permutations and -u 1 for odd. (Contributed by Stefan O'Rear, 28-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-psgn | |- pmSgn = ( d e. _V |-> ( x e. { p e. ( Base ` ( SymGrp ` d ) ) | dom ( p \ _I ) e. Fin } |-> ( iota s E. w e. Word ran ( pmTrsp ` d ) ( x = ( ( SymGrp ` d ) gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cpsgn | |- pmSgn |
|
| 1 | vd | |- d |
|
| 2 | cvv | |- _V |
|
| 3 | vx | |- x |
|
| 4 | vp | |- p |
|
| 5 | cbs | |- Base |
|
| 6 | csymg | |- SymGrp |
|
| 7 | 1 | cv | |- d |
| 8 | 7 6 | cfv | |- ( SymGrp ` d ) |
| 9 | 8 5 | cfv | |- ( Base ` ( SymGrp ` d ) ) |
| 10 | 4 | cv | |- p |
| 11 | cid | |- _I |
|
| 12 | 10 11 | cdif | |- ( p \ _I ) |
| 13 | 12 | cdm | |- dom ( p \ _I ) |
| 14 | cfn | |- Fin |
|
| 15 | 13 14 | wcel | |- dom ( p \ _I ) e. Fin |
| 16 | 15 4 9 | crab | |- { p e. ( Base ` ( SymGrp ` d ) ) | dom ( p \ _I ) e. Fin } |
| 17 | vs | |- s |
|
| 18 | vw | |- w |
|
| 19 | cpmtr | |- pmTrsp |
|
| 20 | 7 19 | cfv | |- ( pmTrsp ` d ) |
| 21 | 20 | crn | |- ran ( pmTrsp ` d ) |
| 22 | 21 | cword | |- Word ran ( pmTrsp ` d ) |
| 23 | 3 | cv | |- x |
| 24 | cgsu | |- gsum |
|
| 25 | 18 | cv | |- w |
| 26 | 8 25 24 | co | |- ( ( SymGrp ` d ) gsum w ) |
| 27 | 23 26 | wceq | |- x = ( ( SymGrp ` d ) gsum w ) |
| 28 | 17 | cv | |- s |
| 29 | c1 | |- 1 |
|
| 30 | 29 | cneg | |- -u 1 |
| 31 | cexp | |- ^ |
|
| 32 | chash | |- # |
|
| 33 | 25 32 | cfv | |- ( # ` w ) |
| 34 | 30 33 31 | co | |- ( -u 1 ^ ( # ` w ) ) |
| 35 | 28 34 | wceq | |- s = ( -u 1 ^ ( # ` w ) ) |
| 36 | 27 35 | wa | |- ( x = ( ( SymGrp ` d ) gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) |
| 37 | 36 18 22 | wrex | |- E. w e. Word ran ( pmTrsp ` d ) ( x = ( ( SymGrp ` d ) gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) |
| 38 | 37 17 | cio | |- ( iota s E. w e. Word ran ( pmTrsp ` d ) ( x = ( ( SymGrp ` d ) gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) |
| 39 | 3 16 38 | cmpt | |- ( x e. { p e. ( Base ` ( SymGrp ` d ) ) | dom ( p \ _I ) e. Fin } |-> ( iota s E. w e. Word ran ( pmTrsp ` d ) ( x = ( ( SymGrp ` d ) gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) ) |
| 40 | 1 2 39 | cmpt | |- ( d e. _V |-> ( x e. { p e. ( Base ` ( SymGrp ` d ) ) | dom ( p \ _I ) e. Fin } |-> ( iota s E. w e. Word ran ( pmTrsp ` d ) ( x = ( ( SymGrp ` d ) gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) ) ) |
| 41 | 0 40 | wceq | |- pmSgn = ( d e. _V |-> ( x e. { p e. ( Base ` ( SymGrp ` d ) ) | dom ( p \ _I ) e. Fin } |-> ( iota s E. w e. Word ran ( pmTrsp ` d ) ( x = ( ( SymGrp ` d ) gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) ) ) |