This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the function G that gives the sequence of monomials of a power series. (Contributed by Mario Carneiro, 26-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | pser.g | |- G = ( x e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( x ^ n ) ) ) ) |
|
| Assertion | pserval | |- ( X e. CC -> ( G ` X ) = ( m e. NN0 |-> ( ( A ` m ) x. ( X ^ m ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pser.g | |- G = ( x e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( x ^ n ) ) ) ) |
|
| 2 | oveq1 | |- ( y = X -> ( y ^ m ) = ( X ^ m ) ) |
|
| 3 | 2 | oveq2d | |- ( y = X -> ( ( A ` m ) x. ( y ^ m ) ) = ( ( A ` m ) x. ( X ^ m ) ) ) |
| 4 | 3 | mpteq2dv | |- ( y = X -> ( m e. NN0 |-> ( ( A ` m ) x. ( y ^ m ) ) ) = ( m e. NN0 |-> ( ( A ` m ) x. ( X ^ m ) ) ) ) |
| 5 | fveq2 | |- ( n = m -> ( A ` n ) = ( A ` m ) ) |
|
| 6 | oveq2 | |- ( n = m -> ( x ^ n ) = ( x ^ m ) ) |
|
| 7 | 5 6 | oveq12d | |- ( n = m -> ( ( A ` n ) x. ( x ^ n ) ) = ( ( A ` m ) x. ( x ^ m ) ) ) |
| 8 | 7 | cbvmptv | |- ( n e. NN0 |-> ( ( A ` n ) x. ( x ^ n ) ) ) = ( m e. NN0 |-> ( ( A ` m ) x. ( x ^ m ) ) ) |
| 9 | oveq1 | |- ( x = y -> ( x ^ m ) = ( y ^ m ) ) |
|
| 10 | 9 | oveq2d | |- ( x = y -> ( ( A ` m ) x. ( x ^ m ) ) = ( ( A ` m ) x. ( y ^ m ) ) ) |
| 11 | 10 | mpteq2dv | |- ( x = y -> ( m e. NN0 |-> ( ( A ` m ) x. ( x ^ m ) ) ) = ( m e. NN0 |-> ( ( A ` m ) x. ( y ^ m ) ) ) ) |
| 12 | 8 11 | eqtrid | |- ( x = y -> ( n e. NN0 |-> ( ( A ` n ) x. ( x ^ n ) ) ) = ( m e. NN0 |-> ( ( A ` m ) x. ( y ^ m ) ) ) ) |
| 13 | 12 | cbvmptv | |- ( x e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( x ^ n ) ) ) ) = ( y e. CC |-> ( m e. NN0 |-> ( ( A ` m ) x. ( y ^ m ) ) ) ) |
| 14 | 1 13 | eqtri | |- G = ( y e. CC |-> ( m e. NN0 |-> ( ( A ` m ) x. ( y ^ m ) ) ) ) |
| 15 | nn0ex | |- NN0 e. _V |
|
| 16 | 15 | mptex | |- ( m e. NN0 |-> ( ( A ` m ) x. ( X ^ m ) ) ) e. _V |
| 17 | 4 14 16 | fvmpt | |- ( X e. CC -> ( G ` X ) = ( m e. NN0 |-> ( ( A ` m ) x. ( X ^ m ) ) ) ) |