This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The primorial of a nonnegative integer divides the least common multiple of all positive integers less than or equal to the integer. (Contributed by AV, 19-Aug-2020) (Revised by AV, 29-Aug-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | prmodvdslcmf | |- ( N e. NN0 -> ( #p ` N ) || ( _lcm ` ( 1 ... N ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prmoval | |- ( N e. NN0 -> ( #p ` N ) = prod_ k e. ( 1 ... N ) if ( k e. Prime , k , 1 ) ) |
|
| 2 | eqidd | |- ( k e. ( 1 ... N ) -> ( m e. NN |-> if ( m e. Prime , m , 1 ) ) = ( m e. NN |-> if ( m e. Prime , m , 1 ) ) ) |
|
| 3 | simpr | |- ( ( k e. ( 1 ... N ) /\ m = k ) -> m = k ) |
|
| 4 | 3 | eleq1d | |- ( ( k e. ( 1 ... N ) /\ m = k ) -> ( m e. Prime <-> k e. Prime ) ) |
| 5 | 4 3 | ifbieq1d | |- ( ( k e. ( 1 ... N ) /\ m = k ) -> if ( m e. Prime , m , 1 ) = if ( k e. Prime , k , 1 ) ) |
| 6 | elfznn | |- ( k e. ( 1 ... N ) -> k e. NN ) |
|
| 7 | 1nn | |- 1 e. NN |
|
| 8 | 7 | a1i | |- ( k e. ( 1 ... N ) -> 1 e. NN ) |
| 9 | 6 8 | ifcld | |- ( k e. ( 1 ... N ) -> if ( k e. Prime , k , 1 ) e. NN ) |
| 10 | 2 5 6 9 | fvmptd | |- ( k e. ( 1 ... N ) -> ( ( m e. NN |-> if ( m e. Prime , m , 1 ) ) ` k ) = if ( k e. Prime , k , 1 ) ) |
| 11 | 10 | eqcomd | |- ( k e. ( 1 ... N ) -> if ( k e. Prime , k , 1 ) = ( ( m e. NN |-> if ( m e. Prime , m , 1 ) ) ` k ) ) |
| 12 | 11 | prodeq2i | |- prod_ k e. ( 1 ... N ) if ( k e. Prime , k , 1 ) = prod_ k e. ( 1 ... N ) ( ( m e. NN |-> if ( m e. Prime , m , 1 ) ) ` k ) |
| 13 | 1 12 | eqtrdi | |- ( N e. NN0 -> ( #p ` N ) = prod_ k e. ( 1 ... N ) ( ( m e. NN |-> if ( m e. Prime , m , 1 ) ) ` k ) ) |
| 14 | fzfid | |- ( N e. NN0 -> ( 1 ... N ) e. Fin ) |
|
| 15 | fz1ssnn | |- ( 1 ... N ) C_ NN |
|
| 16 | 14 15 | jctil | |- ( N e. NN0 -> ( ( 1 ... N ) C_ NN /\ ( 1 ... N ) e. Fin ) ) |
| 17 | fzssz | |- ( 1 ... N ) C_ ZZ |
|
| 18 | 17 | a1i | |- ( N e. NN0 -> ( 1 ... N ) C_ ZZ ) |
| 19 | 0nelfz1 | |- 0 e/ ( 1 ... N ) |
|
| 20 | 19 | a1i | |- ( N e. NN0 -> 0 e/ ( 1 ... N ) ) |
| 21 | lcmfn0cl | |- ( ( ( 1 ... N ) C_ ZZ /\ ( 1 ... N ) e. Fin /\ 0 e/ ( 1 ... N ) ) -> ( _lcm ` ( 1 ... N ) ) e. NN ) |
|
| 22 | 18 14 20 21 | syl3anc | |- ( N e. NN0 -> ( _lcm ` ( 1 ... N ) ) e. NN ) |
| 23 | id | |- ( m e. NN -> m e. NN ) |
|
| 24 | 7 | a1i | |- ( m e. NN -> 1 e. NN ) |
| 25 | 23 24 | ifcld | |- ( m e. NN -> if ( m e. Prime , m , 1 ) e. NN ) |
| 26 | 25 | adantl | |- ( ( N e. NN0 /\ m e. NN ) -> if ( m e. Prime , m , 1 ) e. NN ) |
| 27 | 26 | fmpttd | |- ( N e. NN0 -> ( m e. NN |-> if ( m e. Prime , m , 1 ) ) : NN --> NN ) |
| 28 | simpr | |- ( ( N e. NN0 /\ k e. ( 1 ... N ) ) -> k e. ( 1 ... N ) ) |
|
| 29 | 28 | adantr | |- ( ( ( N e. NN0 /\ k e. ( 1 ... N ) ) /\ x e. ( ( 1 ... N ) \ { k } ) ) -> k e. ( 1 ... N ) ) |
| 30 | eldifi | |- ( x e. ( ( 1 ... N ) \ { k } ) -> x e. ( 1 ... N ) ) |
|
| 31 | 30 | adantl | |- ( ( ( N e. NN0 /\ k e. ( 1 ... N ) ) /\ x e. ( ( 1 ... N ) \ { k } ) ) -> x e. ( 1 ... N ) ) |
| 32 | eldif | |- ( x e. ( ( 1 ... N ) \ { k } ) <-> ( x e. ( 1 ... N ) /\ -. x e. { k } ) ) |
|
| 33 | velsn | |- ( x e. { k } <-> x = k ) |
|
| 34 | 33 | biimpri | |- ( x = k -> x e. { k } ) |
| 35 | 34 | equcoms | |- ( k = x -> x e. { k } ) |
| 36 | 35 | necon3bi | |- ( -. x e. { k } -> k =/= x ) |
| 37 | 32 36 | simplbiim | |- ( x e. ( ( 1 ... N ) \ { k } ) -> k =/= x ) |
| 38 | 37 | adantl | |- ( ( ( N e. NN0 /\ k e. ( 1 ... N ) ) /\ x e. ( ( 1 ... N ) \ { k } ) ) -> k =/= x ) |
| 39 | eqid | |- ( m e. NN |-> if ( m e. Prime , m , 1 ) ) = ( m e. NN |-> if ( m e. Prime , m , 1 ) ) |
|
| 40 | 39 | fvprmselgcd1 | |- ( ( k e. ( 1 ... N ) /\ x e. ( 1 ... N ) /\ k =/= x ) -> ( ( ( m e. NN |-> if ( m e. Prime , m , 1 ) ) ` k ) gcd ( ( m e. NN |-> if ( m e. Prime , m , 1 ) ) ` x ) ) = 1 ) |
| 41 | 29 31 38 40 | syl3anc | |- ( ( ( N e. NN0 /\ k e. ( 1 ... N ) ) /\ x e. ( ( 1 ... N ) \ { k } ) ) -> ( ( ( m e. NN |-> if ( m e. Prime , m , 1 ) ) ` k ) gcd ( ( m e. NN |-> if ( m e. Prime , m , 1 ) ) ` x ) ) = 1 ) |
| 42 | 41 | ralrimiva | |- ( ( N e. NN0 /\ k e. ( 1 ... N ) ) -> A. x e. ( ( 1 ... N ) \ { k } ) ( ( ( m e. NN |-> if ( m e. Prime , m , 1 ) ) ` k ) gcd ( ( m e. NN |-> if ( m e. Prime , m , 1 ) ) ` x ) ) = 1 ) |
| 43 | 42 | ralrimiva | |- ( N e. NN0 -> A. k e. ( 1 ... N ) A. x e. ( ( 1 ... N ) \ { k } ) ( ( ( m e. NN |-> if ( m e. Prime , m , 1 ) ) ` k ) gcd ( ( m e. NN |-> if ( m e. Prime , m , 1 ) ) ` x ) ) = 1 ) |
| 44 | eqidd | |- ( ( N e. NN0 /\ k e. ( 1 ... N ) ) -> ( m e. NN |-> if ( m e. Prime , m , 1 ) ) = ( m e. NN |-> if ( m e. Prime , m , 1 ) ) ) |
|
| 45 | simpr | |- ( ( ( N e. NN0 /\ k e. ( 1 ... N ) ) /\ m = k ) -> m = k ) |
|
| 46 | 45 | eleq1d | |- ( ( ( N e. NN0 /\ k e. ( 1 ... N ) ) /\ m = k ) -> ( m e. Prime <-> k e. Prime ) ) |
| 47 | 46 45 | ifbieq1d | |- ( ( ( N e. NN0 /\ k e. ( 1 ... N ) ) /\ m = k ) -> if ( m e. Prime , m , 1 ) = if ( k e. Prime , k , 1 ) ) |
| 48 | 15 28 | sselid | |- ( ( N e. NN0 /\ k e. ( 1 ... N ) ) -> k e. NN ) |
| 49 | 17 28 | sselid | |- ( ( N e. NN0 /\ k e. ( 1 ... N ) ) -> k e. ZZ ) |
| 50 | 1zzd | |- ( ( N e. NN0 /\ k e. ( 1 ... N ) ) -> 1 e. ZZ ) |
|
| 51 | 49 50 | ifcld | |- ( ( N e. NN0 /\ k e. ( 1 ... N ) ) -> if ( k e. Prime , k , 1 ) e. ZZ ) |
| 52 | 44 47 48 51 | fvmptd | |- ( ( N e. NN0 /\ k e. ( 1 ... N ) ) -> ( ( m e. NN |-> if ( m e. Prime , m , 1 ) ) ` k ) = if ( k e. Prime , k , 1 ) ) |
| 53 | breq1 | |- ( x = if ( k e. Prime , k , 1 ) -> ( x || ( _lcm ` ( 1 ... N ) ) <-> if ( k e. Prime , k , 1 ) || ( _lcm ` ( 1 ... N ) ) ) ) |
|
| 54 | 16 | adantr | |- ( ( N e. NN0 /\ k e. ( 1 ... N ) ) -> ( ( 1 ... N ) C_ NN /\ ( 1 ... N ) e. Fin ) ) |
| 55 | 17 | 2a1i | |- ( ( 1 ... N ) e. Fin -> ( ( 1 ... N ) C_ NN -> ( 1 ... N ) C_ ZZ ) ) |
| 56 | 55 | imdistanri | |- ( ( ( 1 ... N ) C_ NN /\ ( 1 ... N ) e. Fin ) -> ( ( 1 ... N ) C_ ZZ /\ ( 1 ... N ) e. Fin ) ) |
| 57 | dvdslcmf | |- ( ( ( 1 ... N ) C_ ZZ /\ ( 1 ... N ) e. Fin ) -> A. x e. ( 1 ... N ) x || ( _lcm ` ( 1 ... N ) ) ) |
|
| 58 | 54 56 57 | 3syl | |- ( ( N e. NN0 /\ k e. ( 1 ... N ) ) -> A. x e. ( 1 ... N ) x || ( _lcm ` ( 1 ... N ) ) ) |
| 59 | elfzuz2 | |- ( k e. ( 1 ... N ) -> N e. ( ZZ>= ` 1 ) ) |
|
| 60 | 59 | adantl | |- ( ( N e. NN0 /\ k e. ( 1 ... N ) ) -> N e. ( ZZ>= ` 1 ) ) |
| 61 | eluzfz1 | |- ( N e. ( ZZ>= ` 1 ) -> 1 e. ( 1 ... N ) ) |
|
| 62 | 60 61 | syl | |- ( ( N e. NN0 /\ k e. ( 1 ... N ) ) -> 1 e. ( 1 ... N ) ) |
| 63 | 28 62 | ifcld | |- ( ( N e. NN0 /\ k e. ( 1 ... N ) ) -> if ( k e. Prime , k , 1 ) e. ( 1 ... N ) ) |
| 64 | 53 58 63 | rspcdva | |- ( ( N e. NN0 /\ k e. ( 1 ... N ) ) -> if ( k e. Prime , k , 1 ) || ( _lcm ` ( 1 ... N ) ) ) |
| 65 | 52 64 | eqbrtrd | |- ( ( N e. NN0 /\ k e. ( 1 ... N ) ) -> ( ( m e. NN |-> if ( m e. Prime , m , 1 ) ) ` k ) || ( _lcm ` ( 1 ... N ) ) ) |
| 66 | 65 | ralrimiva | |- ( N e. NN0 -> A. k e. ( 1 ... N ) ( ( m e. NN |-> if ( m e. Prime , m , 1 ) ) ` k ) || ( _lcm ` ( 1 ... N ) ) ) |
| 67 | coprmproddvds | |- ( ( ( ( 1 ... N ) C_ NN /\ ( 1 ... N ) e. Fin ) /\ ( ( _lcm ` ( 1 ... N ) ) e. NN /\ ( m e. NN |-> if ( m e. Prime , m , 1 ) ) : NN --> NN ) /\ ( A. k e. ( 1 ... N ) A. x e. ( ( 1 ... N ) \ { k } ) ( ( ( m e. NN |-> if ( m e. Prime , m , 1 ) ) ` k ) gcd ( ( m e. NN |-> if ( m e. Prime , m , 1 ) ) ` x ) ) = 1 /\ A. k e. ( 1 ... N ) ( ( m e. NN |-> if ( m e. Prime , m , 1 ) ) ` k ) || ( _lcm ` ( 1 ... N ) ) ) ) -> prod_ k e. ( 1 ... N ) ( ( m e. NN |-> if ( m e. Prime , m , 1 ) ) ` k ) || ( _lcm ` ( 1 ... N ) ) ) |
|
| 68 | 16 22 27 43 66 67 | syl122anc | |- ( N e. NN0 -> prod_ k e. ( 1 ... N ) ( ( m e. NN |-> if ( m e. Prime , m , 1 ) ) ` k ) || ( _lcm ` ( 1 ... N ) ) ) |
| 69 | 13 68 | eqbrtrd | |- ( N e. NN0 -> ( #p ` N ) || ( _lcm ` ( 1 ... N ) ) ) |