This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The primorial of 1. (Contributed by AV, 28-Aug-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | prmo1 | ⊢ ( #p ‘ 1 ) = 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1nn0 | ⊢ 1 ∈ ℕ0 | |
| 2 | prmoval | ⊢ ( 1 ∈ ℕ0 → ( #p ‘ 1 ) = ∏ 𝑘 ∈ ( 1 ... 1 ) if ( 𝑘 ∈ ℙ , 𝑘 , 1 ) ) | |
| 3 | 1 2 | ax-mp | ⊢ ( #p ‘ 1 ) = ∏ 𝑘 ∈ ( 1 ... 1 ) if ( 𝑘 ∈ ℙ , 𝑘 , 1 ) |
| 4 | 1z | ⊢ 1 ∈ ℤ | |
| 5 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 6 | 1nprm | ⊢ ¬ 1 ∈ ℙ | |
| 7 | eleq1 | ⊢ ( 𝑘 = 1 → ( 𝑘 ∈ ℙ ↔ 1 ∈ ℙ ) ) | |
| 8 | 6 7 | mtbiri | ⊢ ( 𝑘 = 1 → ¬ 𝑘 ∈ ℙ ) |
| 9 | 8 | iffalsed | ⊢ ( 𝑘 = 1 → if ( 𝑘 ∈ ℙ , 𝑘 , 1 ) = 1 ) |
| 10 | 9 | fprod1 | ⊢ ( ( 1 ∈ ℤ ∧ 1 ∈ ℂ ) → ∏ 𝑘 ∈ ( 1 ... 1 ) if ( 𝑘 ∈ ℙ , 𝑘 , 1 ) = 1 ) |
| 11 | 4 5 10 | mp2an | ⊢ ∏ 𝑘 ∈ ( 1 ... 1 ) if ( 𝑘 ∈ ℙ , 𝑘 , 1 ) = 1 |
| 12 | 3 11 | eqtri | ⊢ ( #p ‘ 1 ) = 1 |