This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The (modular) inverse of the inverse of a number is itself. (Contributed by Mario Carneiro, 24-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | prmdiv.1 | |- R = ( ( A ^ ( P - 2 ) ) mod P ) |
|
| Assertion | prmdivdiv | |- ( ( P e. Prime /\ A e. ( 1 ... ( P - 1 ) ) ) -> A = ( ( R ^ ( P - 2 ) ) mod P ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prmdiv.1 | |- R = ( ( A ^ ( P - 2 ) ) mod P ) |
|
| 2 | fz1ssfz0 | |- ( 1 ... ( P - 1 ) ) C_ ( 0 ... ( P - 1 ) ) |
|
| 3 | simpr | |- ( ( P e. Prime /\ A e. ( 1 ... ( P - 1 ) ) ) -> A e. ( 1 ... ( P - 1 ) ) ) |
|
| 4 | 2 3 | sselid | |- ( ( P e. Prime /\ A e. ( 1 ... ( P - 1 ) ) ) -> A e. ( 0 ... ( P - 1 ) ) ) |
| 5 | simpl | |- ( ( P e. Prime /\ A e. ( 1 ... ( P - 1 ) ) ) -> P e. Prime ) |
|
| 6 | elfznn | |- ( A e. ( 1 ... ( P - 1 ) ) -> A e. NN ) |
|
| 7 | 6 | adantl | |- ( ( P e. Prime /\ A e. ( 1 ... ( P - 1 ) ) ) -> A e. NN ) |
| 8 | 7 | nnzd | |- ( ( P e. Prime /\ A e. ( 1 ... ( P - 1 ) ) ) -> A e. ZZ ) |
| 9 | prmnn | |- ( P e. Prime -> P e. NN ) |
|
| 10 | fzm1ndvds | |- ( ( P e. NN /\ A e. ( 1 ... ( P - 1 ) ) ) -> -. P || A ) |
|
| 11 | 9 10 | sylan | |- ( ( P e. Prime /\ A e. ( 1 ... ( P - 1 ) ) ) -> -. P || A ) |
| 12 | 1 | prmdiv | |- ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( R e. ( 1 ... ( P - 1 ) ) /\ P || ( ( A x. R ) - 1 ) ) ) |
| 13 | 5 8 11 12 | syl3anc | |- ( ( P e. Prime /\ A e. ( 1 ... ( P - 1 ) ) ) -> ( R e. ( 1 ... ( P - 1 ) ) /\ P || ( ( A x. R ) - 1 ) ) ) |
| 14 | 13 | simprd | |- ( ( P e. Prime /\ A e. ( 1 ... ( P - 1 ) ) ) -> P || ( ( A x. R ) - 1 ) ) |
| 15 | 7 | nncnd | |- ( ( P e. Prime /\ A e. ( 1 ... ( P - 1 ) ) ) -> A e. CC ) |
| 16 | 13 | simpld | |- ( ( P e. Prime /\ A e. ( 1 ... ( P - 1 ) ) ) -> R e. ( 1 ... ( P - 1 ) ) ) |
| 17 | elfznn | |- ( R e. ( 1 ... ( P - 1 ) ) -> R e. NN ) |
|
| 18 | 16 17 | syl | |- ( ( P e. Prime /\ A e. ( 1 ... ( P - 1 ) ) ) -> R e. NN ) |
| 19 | 18 | nncnd | |- ( ( P e. Prime /\ A e. ( 1 ... ( P - 1 ) ) ) -> R e. CC ) |
| 20 | 15 19 | mulcomd | |- ( ( P e. Prime /\ A e. ( 1 ... ( P - 1 ) ) ) -> ( A x. R ) = ( R x. A ) ) |
| 21 | 20 | oveq1d | |- ( ( P e. Prime /\ A e. ( 1 ... ( P - 1 ) ) ) -> ( ( A x. R ) - 1 ) = ( ( R x. A ) - 1 ) ) |
| 22 | 14 21 | breqtrd | |- ( ( P e. Prime /\ A e. ( 1 ... ( P - 1 ) ) ) -> P || ( ( R x. A ) - 1 ) ) |
| 23 | 16 | elfzelzd | |- ( ( P e. Prime /\ A e. ( 1 ... ( P - 1 ) ) ) -> R e. ZZ ) |
| 24 | fzm1ndvds | |- ( ( P e. NN /\ R e. ( 1 ... ( P - 1 ) ) ) -> -. P || R ) |
|
| 25 | 9 16 24 | syl2an2r | |- ( ( P e. Prime /\ A e. ( 1 ... ( P - 1 ) ) ) -> -. P || R ) |
| 26 | eqid | |- ( ( R ^ ( P - 2 ) ) mod P ) = ( ( R ^ ( P - 2 ) ) mod P ) |
|
| 27 | 26 | prmdiveq | |- ( ( P e. Prime /\ R e. ZZ /\ -. P || R ) -> ( ( A e. ( 0 ... ( P - 1 ) ) /\ P || ( ( R x. A ) - 1 ) ) <-> A = ( ( R ^ ( P - 2 ) ) mod P ) ) ) |
| 28 | 5 23 25 27 | syl3anc | |- ( ( P e. Prime /\ A e. ( 1 ... ( P - 1 ) ) ) -> ( ( A e. ( 0 ... ( P - 1 ) ) /\ P || ( ( R x. A ) - 1 ) ) <-> A = ( ( R ^ ( P - 2 ) ) mod P ) ) ) |
| 29 | 4 22 28 | mpbi2and | |- ( ( P e. Prime /\ A e. ( 1 ... ( P - 1 ) ) ) -> A = ( ( R ^ ( P - 2 ) ) mod P ) ) |