This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Left uniqueness of the successor mapping. (Contributed by Peter Mazsa, 8-Jan-2026)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sucmapleftuniq | |- ( ( L e. V /\ M e. W /\ N e. X ) -> ( ( L SucMap N /\ M SucMap N ) -> L = M ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brsucmap | |- ( ( L e. V /\ N e. X ) -> ( L SucMap N <-> suc L = N ) ) |
|
| 2 | brsucmap | |- ( ( M e. W /\ N e. X ) -> ( M SucMap N <-> suc M = N ) ) |
|
| 3 | 1 2 | bi2anan9 | |- ( ( ( L e. V /\ N e. X ) /\ ( M e. W /\ N e. X ) ) -> ( ( L SucMap N /\ M SucMap N ) <-> ( suc L = N /\ suc M = N ) ) ) |
| 4 | 3 | 3impdir | |- ( ( L e. V /\ M e. W /\ N e. X ) -> ( ( L SucMap N /\ M SucMap N ) <-> ( suc L = N /\ suc M = N ) ) ) |
| 5 | eqtr3 | |- ( ( suc L = N /\ suc M = N ) -> suc L = suc M ) |
|
| 6 | 4 5 | biimtrdi | |- ( ( L e. V /\ M e. W /\ N e. X ) -> ( ( L SucMap N /\ M SucMap N ) -> suc L = suc M ) ) |
| 7 | suc11reg | |- ( suc L = suc M <-> L = M ) |
|
| 8 | 6 7 | imbitrdi | |- ( ( L e. V /\ M e. W /\ N e. X ) -> ( ( L SucMap N /\ M SucMap N ) -> L = M ) ) |