This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Structure product pointwise sums are closed when the factors are semigroups. (Contributed by AV, 21-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | prdsplusgsgrpcl.y | |- Y = ( S Xs_ R ) |
|
| prdsplusgsgrpcl.b | |- B = ( Base ` Y ) |
||
| prdsplusgsgrpcl.p | |- .+ = ( +g ` Y ) |
||
| prdsplusgsgrpcl.s | |- ( ph -> S e. V ) |
||
| prdsplusgsgrpcl.i | |- ( ph -> I e. W ) |
||
| prdsplusgsgrpcl.r | |- ( ph -> R : I --> Smgrp ) |
||
| prdsplusgsgrpcl.f | |- ( ph -> F e. B ) |
||
| prdsplusgsgrpcl.g | |- ( ph -> G e. B ) |
||
| Assertion | prdsplusgsgrpcl | |- ( ph -> ( F .+ G ) e. B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prdsplusgsgrpcl.y | |- Y = ( S Xs_ R ) |
|
| 2 | prdsplusgsgrpcl.b | |- B = ( Base ` Y ) |
|
| 3 | prdsplusgsgrpcl.p | |- .+ = ( +g ` Y ) |
|
| 4 | prdsplusgsgrpcl.s | |- ( ph -> S e. V ) |
|
| 5 | prdsplusgsgrpcl.i | |- ( ph -> I e. W ) |
|
| 6 | prdsplusgsgrpcl.r | |- ( ph -> R : I --> Smgrp ) |
|
| 7 | prdsplusgsgrpcl.f | |- ( ph -> F e. B ) |
|
| 8 | prdsplusgsgrpcl.g | |- ( ph -> G e. B ) |
|
| 9 | 6 | ffnd | |- ( ph -> R Fn I ) |
| 10 | 1 2 4 5 9 7 8 3 | prdsplusgval | |- ( ph -> ( F .+ G ) = ( x e. I |-> ( ( F ` x ) ( +g ` ( R ` x ) ) ( G ` x ) ) ) ) |
| 11 | 6 | ffvelcdmda | |- ( ( ph /\ x e. I ) -> ( R ` x ) e. Smgrp ) |
| 12 | 4 | adantr | |- ( ( ph /\ x e. I ) -> S e. V ) |
| 13 | 5 | adantr | |- ( ( ph /\ x e. I ) -> I e. W ) |
| 14 | 9 | adantr | |- ( ( ph /\ x e. I ) -> R Fn I ) |
| 15 | 7 | adantr | |- ( ( ph /\ x e. I ) -> F e. B ) |
| 16 | simpr | |- ( ( ph /\ x e. I ) -> x e. I ) |
|
| 17 | 1 2 12 13 14 15 16 | prdsbasprj | |- ( ( ph /\ x e. I ) -> ( F ` x ) e. ( Base ` ( R ` x ) ) ) |
| 18 | 8 | adantr | |- ( ( ph /\ x e. I ) -> G e. B ) |
| 19 | 1 2 12 13 14 18 16 | prdsbasprj | |- ( ( ph /\ x e. I ) -> ( G ` x ) e. ( Base ` ( R ` x ) ) ) |
| 20 | eqid | |- ( Base ` ( R ` x ) ) = ( Base ` ( R ` x ) ) |
|
| 21 | eqid | |- ( +g ` ( R ` x ) ) = ( +g ` ( R ` x ) ) |
|
| 22 | 20 21 | sgrpcl | |- ( ( ( R ` x ) e. Smgrp /\ ( F ` x ) e. ( Base ` ( R ` x ) ) /\ ( G ` x ) e. ( Base ` ( R ` x ) ) ) -> ( ( F ` x ) ( +g ` ( R ` x ) ) ( G ` x ) ) e. ( Base ` ( R ` x ) ) ) |
| 23 | 11 17 19 22 | syl3anc | |- ( ( ph /\ x e. I ) -> ( ( F ` x ) ( +g ` ( R ` x ) ) ( G ` x ) ) e. ( Base ` ( R ` x ) ) ) |
| 24 | 23 | ralrimiva | |- ( ph -> A. x e. I ( ( F ` x ) ( +g ` ( R ` x ) ) ( G ` x ) ) e. ( Base ` ( R ` x ) ) ) |
| 25 | 1 2 4 5 9 | prdsbasmpt | |- ( ph -> ( ( x e. I |-> ( ( F ` x ) ( +g ` ( R ` x ) ) ( G ` x ) ) ) e. B <-> A. x e. I ( ( F ` x ) ( +g ` ( R ` x ) ) ( G ` x ) ) e. ( Base ` ( R ` x ) ) ) ) |
| 26 | 24 25 | mpbird | |- ( ph -> ( x e. I |-> ( ( F ` x ) ( +g ` ( R ` x ) ) ( G ` x ) ) ) e. B ) |
| 27 | 10 26 | eqeltrd | |- ( ph -> ( F .+ G ) e. B ) |