This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Structure product pointwise sums are closed when the factors are semigroups. (Contributed by AV, 21-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | prdsplusgsgrpcl.y | ⊢ 𝑌 = ( 𝑆 Xs 𝑅 ) | |
| prdsplusgsgrpcl.b | ⊢ 𝐵 = ( Base ‘ 𝑌 ) | ||
| prdsplusgsgrpcl.p | ⊢ + = ( +g ‘ 𝑌 ) | ||
| prdsplusgsgrpcl.s | ⊢ ( 𝜑 → 𝑆 ∈ 𝑉 ) | ||
| prdsplusgsgrpcl.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) | ||
| prdsplusgsgrpcl.r | ⊢ ( 𝜑 → 𝑅 : 𝐼 ⟶ Smgrp ) | ||
| prdsplusgsgrpcl.f | ⊢ ( 𝜑 → 𝐹 ∈ 𝐵 ) | ||
| prdsplusgsgrpcl.g | ⊢ ( 𝜑 → 𝐺 ∈ 𝐵 ) | ||
| Assertion | prdsplusgsgrpcl | ⊢ ( 𝜑 → ( 𝐹 + 𝐺 ) ∈ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prdsplusgsgrpcl.y | ⊢ 𝑌 = ( 𝑆 Xs 𝑅 ) | |
| 2 | prdsplusgsgrpcl.b | ⊢ 𝐵 = ( Base ‘ 𝑌 ) | |
| 3 | prdsplusgsgrpcl.p | ⊢ + = ( +g ‘ 𝑌 ) | |
| 4 | prdsplusgsgrpcl.s | ⊢ ( 𝜑 → 𝑆 ∈ 𝑉 ) | |
| 5 | prdsplusgsgrpcl.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) | |
| 6 | prdsplusgsgrpcl.r | ⊢ ( 𝜑 → 𝑅 : 𝐼 ⟶ Smgrp ) | |
| 7 | prdsplusgsgrpcl.f | ⊢ ( 𝜑 → 𝐹 ∈ 𝐵 ) | |
| 8 | prdsplusgsgrpcl.g | ⊢ ( 𝜑 → 𝐺 ∈ 𝐵 ) | |
| 9 | 6 | ffnd | ⊢ ( 𝜑 → 𝑅 Fn 𝐼 ) |
| 10 | 1 2 4 5 9 7 8 3 | prdsplusgval | ⊢ ( 𝜑 → ( 𝐹 + 𝐺 ) = ( 𝑥 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝐺 ‘ 𝑥 ) ) ) ) |
| 11 | 6 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝑅 ‘ 𝑥 ) ∈ Smgrp ) |
| 12 | 4 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝑆 ∈ 𝑉 ) |
| 13 | 5 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝐼 ∈ 𝑊 ) |
| 14 | 9 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝑅 Fn 𝐼 ) |
| 15 | 7 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝐹 ∈ 𝐵 ) |
| 16 | simpr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝑥 ∈ 𝐼 ) | |
| 17 | 1 2 12 13 14 15 16 | prdsbasprj | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝐹 ‘ 𝑥 ) ∈ ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ) |
| 18 | 8 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝐺 ∈ 𝐵 ) |
| 19 | 1 2 12 13 14 18 16 | prdsbasprj | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝐺 ‘ 𝑥 ) ∈ ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ) |
| 20 | eqid | ⊢ ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) = ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) | |
| 21 | eqid | ⊢ ( +g ‘ ( 𝑅 ‘ 𝑥 ) ) = ( +g ‘ ( 𝑅 ‘ 𝑥 ) ) | |
| 22 | 20 21 | sgrpcl | ⊢ ( ( ( 𝑅 ‘ 𝑥 ) ∈ Smgrp ∧ ( 𝐹 ‘ 𝑥 ) ∈ ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ∧ ( 𝐺 ‘ 𝑥 ) ∈ ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ) → ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝐺 ‘ 𝑥 ) ) ∈ ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ) |
| 23 | 11 17 19 22 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝐺 ‘ 𝑥 ) ) ∈ ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ) |
| 24 | 23 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐼 ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝐺 ‘ 𝑥 ) ) ∈ ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ) |
| 25 | 1 2 4 5 9 | prdsbasmpt | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝐺 ‘ 𝑥 ) ) ) ∈ 𝐵 ↔ ∀ 𝑥 ∈ 𝐼 ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝐺 ‘ 𝑥 ) ) ∈ ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ) ) |
| 26 | 24 25 | mpbird | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝐺 ‘ 𝑥 ) ) ) ∈ 𝐵 ) |
| 27 | 10 26 | eqeltrd | ⊢ ( 𝜑 → ( 𝐹 + 𝐺 ) ∈ 𝐵 ) |