This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of a structure product's ring product at a single coordinate. (Contributed by Mario Carneiro, 11-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | prdsbasmpt.y | |- Y = ( S Xs_ R ) |
|
| prdsbasmpt.b | |- B = ( Base ` Y ) |
||
| prdsbasmpt.s | |- ( ph -> S e. V ) |
||
| prdsbasmpt.i | |- ( ph -> I e. W ) |
||
| prdsbasmpt.r | |- ( ph -> R Fn I ) |
||
| prdsplusgval.f | |- ( ph -> F e. B ) |
||
| prdsplusgval.g | |- ( ph -> G e. B ) |
||
| prdsmulrval.t | |- .x. = ( .r ` Y ) |
||
| prdsmulrfval.j | |- ( ph -> J e. I ) |
||
| Assertion | prdsmulrfval | |- ( ph -> ( ( F .x. G ) ` J ) = ( ( F ` J ) ( .r ` ( R ` J ) ) ( G ` J ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prdsbasmpt.y | |- Y = ( S Xs_ R ) |
|
| 2 | prdsbasmpt.b | |- B = ( Base ` Y ) |
|
| 3 | prdsbasmpt.s | |- ( ph -> S e. V ) |
|
| 4 | prdsbasmpt.i | |- ( ph -> I e. W ) |
|
| 5 | prdsbasmpt.r | |- ( ph -> R Fn I ) |
|
| 6 | prdsplusgval.f | |- ( ph -> F e. B ) |
|
| 7 | prdsplusgval.g | |- ( ph -> G e. B ) |
|
| 8 | prdsmulrval.t | |- .x. = ( .r ` Y ) |
|
| 9 | prdsmulrfval.j | |- ( ph -> J e. I ) |
|
| 10 | 1 2 3 4 5 6 7 8 | prdsmulrval | |- ( ph -> ( F .x. G ) = ( x e. I |-> ( ( F ` x ) ( .r ` ( R ` x ) ) ( G ` x ) ) ) ) |
| 11 | 10 | fveq1d | |- ( ph -> ( ( F .x. G ) ` J ) = ( ( x e. I |-> ( ( F ` x ) ( .r ` ( R ` x ) ) ( G ` x ) ) ) ` J ) ) |
| 12 | 2fveq3 | |- ( x = J -> ( .r ` ( R ` x ) ) = ( .r ` ( R ` J ) ) ) |
|
| 13 | fveq2 | |- ( x = J -> ( F ` x ) = ( F ` J ) ) |
|
| 14 | fveq2 | |- ( x = J -> ( G ` x ) = ( G ` J ) ) |
|
| 15 | 12 13 14 | oveq123d | |- ( x = J -> ( ( F ` x ) ( .r ` ( R ` x ) ) ( G ` x ) ) = ( ( F ` J ) ( .r ` ( R ` J ) ) ( G ` J ) ) ) |
| 16 | eqid | |- ( x e. I |-> ( ( F ` x ) ( .r ` ( R ` x ) ) ( G ` x ) ) ) = ( x e. I |-> ( ( F ` x ) ( .r ` ( R ` x ) ) ( G ` x ) ) ) |
|
| 17 | ovex | |- ( ( F ` J ) ( .r ` ( R ` J ) ) ( G ` J ) ) e. _V |
|
| 18 | 15 16 17 | fvmpt | |- ( J e. I -> ( ( x e. I |-> ( ( F ` x ) ( .r ` ( R ` x ) ) ( G ` x ) ) ) ` J ) = ( ( F ` J ) ( .r ` ( R ` J ) ) ( G ` J ) ) ) |
| 19 | 9 18 | syl | |- ( ph -> ( ( x e. I |-> ( ( F ` x ) ( .r ` ( R ` x ) ) ( G ` x ) ) ) ` J ) = ( ( F ` J ) ( .r ` ( R ` J ) ) ( G ` J ) ) ) |
| 20 | 11 19 | eqtrd | |- ( ph -> ( ( F .x. G ) ` J ) = ( ( F ` J ) ( .r ` ( R ` J ) ) ( G ` J ) ) ) |