This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Change bound variable in an indexed Cartesian product. (Contributed by Jeff Madsen, 20-Jun-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cbvixp.1 | |- F/_ y B |
|
| cbvixp.2 | |- F/_ x C |
||
| cbvixp.3 | |- ( x = y -> B = C ) |
||
| Assertion | cbvixp | |- X_ x e. A B = X_ y e. A C |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvixp.1 | |- F/_ y B |
|
| 2 | cbvixp.2 | |- F/_ x C |
|
| 3 | cbvixp.3 | |- ( x = y -> B = C ) |
|
| 4 | 1 | nfel2 | |- F/ y ( f ` x ) e. B |
| 5 | 2 | nfel2 | |- F/ x ( f ` y ) e. C |
| 6 | fveq2 | |- ( x = y -> ( f ` x ) = ( f ` y ) ) |
|
| 7 | 6 3 | eleq12d | |- ( x = y -> ( ( f ` x ) e. B <-> ( f ` y ) e. C ) ) |
| 8 | 4 5 7 | cbvralw | |- ( A. x e. A ( f ` x ) e. B <-> A. y e. A ( f ` y ) e. C ) |
| 9 | 8 | anbi2i | |- ( ( f Fn A /\ A. x e. A ( f ` x ) e. B ) <-> ( f Fn A /\ A. y e. A ( f ` y ) e. C ) ) |
| 10 | 9 | abbii | |- { f | ( f Fn A /\ A. x e. A ( f ` x ) e. B ) } = { f | ( f Fn A /\ A. y e. A ( f ` y ) e. C ) } |
| 11 | dfixp | |- X_ x e. A B = { f | ( f Fn A /\ A. x e. A ( f ` x ) e. B ) } |
|
| 12 | dfixp | |- X_ y e. A C = { f | ( f Fn A /\ A. y e. A ( f ` y ) e. C ) } |
|
| 13 | 10 11 12 | 3eqtr4i | |- X_ x e. A B = X_ y e. A C |