This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Infinity
Cardinal numbers
pr2ne
Metamath Proof Explorer
Description: If an unordered pair has two elements, then they are different.
(Contributed by FL , 14-Feb-2010) Avoid ax-pow , ax-un . (Revised by BTernaryTau , 30-Dec-2024)
Ref
Expression
Assertion
pr2ne
⊢ A ∈ C ∧ B ∈ D → A B ≈ 2 𝑜 ↔ A ≠ B
Proof
Step
Hyp
Ref
Expression
1
snnen2o
⊢ ¬ A ≈ 2 𝑜
2
dfsn2
⊢ A = A A
3
preq2
⊢ A = B → A A = A B
4
2 3
eqtr2id
⊢ A = B → A B = A
5
4
breq1d
⊢ A = B → A B ≈ 2 𝑜 ↔ A ≈ 2 𝑜
6
1 5
mtbiri
⊢ A = B → ¬ A B ≈ 2 𝑜
7
6
necon2ai
⊢ A B ≈ 2 𝑜 → A ≠ B
8
enpr2
⊢ A ∈ C ∧ B ∈ D ∧ A ≠ B → A B ≈ 2 𝑜
9
8
3expia
⊢ A ∈ C ∧ B ∈ D → A ≠ B → A B ≈ 2 𝑜
10
7 9
impbid2
⊢ A ∈ C ∧ B ∈ D → A B ≈ 2 𝑜 ↔ A ≠ B