This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The inverse image of a partial order is a partial order. (Contributed by Jeff Madsen, 18-Jun-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pofun.1 | |- S = { <. x , y >. | X R Y } |
|
| pofun.2 | |- ( x = y -> X = Y ) |
||
| Assertion | pofun | |- ( ( R Po B /\ A. x e. A X e. B ) -> S Po A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pofun.1 | |- S = { <. x , y >. | X R Y } |
|
| 2 | pofun.2 | |- ( x = y -> X = Y ) |
|
| 3 | nfcsb1v | |- F/_ x [_ v / x ]_ X |
|
| 4 | 3 | nfel1 | |- F/ x [_ v / x ]_ X e. B |
| 5 | csbeq1a | |- ( x = v -> X = [_ v / x ]_ X ) |
|
| 6 | 5 | eleq1d | |- ( x = v -> ( X e. B <-> [_ v / x ]_ X e. B ) ) |
| 7 | 4 6 | rspc | |- ( v e. A -> ( A. x e. A X e. B -> [_ v / x ]_ X e. B ) ) |
| 8 | 7 | impcom | |- ( ( A. x e. A X e. B /\ v e. A ) -> [_ v / x ]_ X e. B ) |
| 9 | poirr | |- ( ( R Po B /\ [_ v / x ]_ X e. B ) -> -. [_ v / x ]_ X R [_ v / x ]_ X ) |
|
| 10 | df-br | |- ( v S v <-> <. v , v >. e. S ) |
|
| 11 | 1 | eleq2i | |- ( <. v , v >. e. S <-> <. v , v >. e. { <. x , y >. | X R Y } ) |
| 12 | nfcv | |- F/_ x R |
|
| 13 | nfcv | |- F/_ x Y |
|
| 14 | 3 12 13 | nfbr | |- F/ x [_ v / x ]_ X R Y |
| 15 | nfv | |- F/ y [_ v / x ]_ X R [_ v / x ]_ X |
|
| 16 | vex | |- v e. _V |
|
| 17 | 5 | breq1d | |- ( x = v -> ( X R Y <-> [_ v / x ]_ X R Y ) ) |
| 18 | vex | |- y e. _V |
|
| 19 | 18 2 | csbie | |- [_ y / x ]_ X = Y |
| 20 | csbeq1 | |- ( y = v -> [_ y / x ]_ X = [_ v / x ]_ X ) |
|
| 21 | 19 20 | eqtr3id | |- ( y = v -> Y = [_ v / x ]_ X ) |
| 22 | 21 | breq2d | |- ( y = v -> ( [_ v / x ]_ X R Y <-> [_ v / x ]_ X R [_ v / x ]_ X ) ) |
| 23 | 14 15 16 16 17 22 | opelopabf | |- ( <. v , v >. e. { <. x , y >. | X R Y } <-> [_ v / x ]_ X R [_ v / x ]_ X ) |
| 24 | 10 11 23 | 3bitri | |- ( v S v <-> [_ v / x ]_ X R [_ v / x ]_ X ) |
| 25 | 9 24 | sylnibr | |- ( ( R Po B /\ [_ v / x ]_ X e. B ) -> -. v S v ) |
| 26 | 8 25 | sylan2 | |- ( ( R Po B /\ ( A. x e. A X e. B /\ v e. A ) ) -> -. v S v ) |
| 27 | 26 | anassrs | |- ( ( ( R Po B /\ A. x e. A X e. B ) /\ v e. A ) -> -. v S v ) |
| 28 | 7 | com12 | |- ( A. x e. A X e. B -> ( v e. A -> [_ v / x ]_ X e. B ) ) |
| 29 | nfcsb1v | |- F/_ x [_ w / x ]_ X |
|
| 30 | 29 | nfel1 | |- F/ x [_ w / x ]_ X e. B |
| 31 | csbeq1a | |- ( x = w -> X = [_ w / x ]_ X ) |
|
| 32 | 31 | eleq1d | |- ( x = w -> ( X e. B <-> [_ w / x ]_ X e. B ) ) |
| 33 | 30 32 | rspc | |- ( w e. A -> ( A. x e. A X e. B -> [_ w / x ]_ X e. B ) ) |
| 34 | 33 | com12 | |- ( A. x e. A X e. B -> ( w e. A -> [_ w / x ]_ X e. B ) ) |
| 35 | nfcsb1v | |- F/_ x [_ z / x ]_ X |
|
| 36 | 35 | nfel1 | |- F/ x [_ z / x ]_ X e. B |
| 37 | csbeq1a | |- ( x = z -> X = [_ z / x ]_ X ) |
|
| 38 | 37 | eleq1d | |- ( x = z -> ( X e. B <-> [_ z / x ]_ X e. B ) ) |
| 39 | 36 38 | rspc | |- ( z e. A -> ( A. x e. A X e. B -> [_ z / x ]_ X e. B ) ) |
| 40 | 39 | com12 | |- ( A. x e. A X e. B -> ( z e. A -> [_ z / x ]_ X e. B ) ) |
| 41 | 28 34 40 | 3anim123d | |- ( A. x e. A X e. B -> ( ( v e. A /\ w e. A /\ z e. A ) -> ( [_ v / x ]_ X e. B /\ [_ w / x ]_ X e. B /\ [_ z / x ]_ X e. B ) ) ) |
| 42 | 41 | imp | |- ( ( A. x e. A X e. B /\ ( v e. A /\ w e. A /\ z e. A ) ) -> ( [_ v / x ]_ X e. B /\ [_ w / x ]_ X e. B /\ [_ z / x ]_ X e. B ) ) |
| 43 | 42 | adantll | |- ( ( ( R Po B /\ A. x e. A X e. B ) /\ ( v e. A /\ w e. A /\ z e. A ) ) -> ( [_ v / x ]_ X e. B /\ [_ w / x ]_ X e. B /\ [_ z / x ]_ X e. B ) ) |
| 44 | potr | |- ( ( R Po B /\ ( [_ v / x ]_ X e. B /\ [_ w / x ]_ X e. B /\ [_ z / x ]_ X e. B ) ) -> ( ( [_ v / x ]_ X R [_ w / x ]_ X /\ [_ w / x ]_ X R [_ z / x ]_ X ) -> [_ v / x ]_ X R [_ z / x ]_ X ) ) |
|
| 45 | df-br | |- ( v S w <-> <. v , w >. e. S ) |
|
| 46 | 1 | eleq2i | |- ( <. v , w >. e. S <-> <. v , w >. e. { <. x , y >. | X R Y } ) |
| 47 | nfv | |- F/ y [_ v / x ]_ X R [_ w / x ]_ X |
|
| 48 | vex | |- w e. _V |
|
| 49 | csbeq1 | |- ( y = w -> [_ y / x ]_ X = [_ w / x ]_ X ) |
|
| 50 | 19 49 | eqtr3id | |- ( y = w -> Y = [_ w / x ]_ X ) |
| 51 | 50 | breq2d | |- ( y = w -> ( [_ v / x ]_ X R Y <-> [_ v / x ]_ X R [_ w / x ]_ X ) ) |
| 52 | 14 47 16 48 17 51 | opelopabf | |- ( <. v , w >. e. { <. x , y >. | X R Y } <-> [_ v / x ]_ X R [_ w / x ]_ X ) |
| 53 | 45 46 52 | 3bitri | |- ( v S w <-> [_ v / x ]_ X R [_ w / x ]_ X ) |
| 54 | df-br | |- ( w S z <-> <. w , z >. e. S ) |
|
| 55 | 1 | eleq2i | |- ( <. w , z >. e. S <-> <. w , z >. e. { <. x , y >. | X R Y } ) |
| 56 | 29 12 13 | nfbr | |- F/ x [_ w / x ]_ X R Y |
| 57 | nfv | |- F/ y [_ w / x ]_ X R [_ z / x ]_ X |
|
| 58 | vex | |- z e. _V |
|
| 59 | 31 | breq1d | |- ( x = w -> ( X R Y <-> [_ w / x ]_ X R Y ) ) |
| 60 | csbeq1 | |- ( y = z -> [_ y / x ]_ X = [_ z / x ]_ X ) |
|
| 61 | 19 60 | eqtr3id | |- ( y = z -> Y = [_ z / x ]_ X ) |
| 62 | 61 | breq2d | |- ( y = z -> ( [_ w / x ]_ X R Y <-> [_ w / x ]_ X R [_ z / x ]_ X ) ) |
| 63 | 56 57 48 58 59 62 | opelopabf | |- ( <. w , z >. e. { <. x , y >. | X R Y } <-> [_ w / x ]_ X R [_ z / x ]_ X ) |
| 64 | 54 55 63 | 3bitri | |- ( w S z <-> [_ w / x ]_ X R [_ z / x ]_ X ) |
| 65 | 53 64 | anbi12i | |- ( ( v S w /\ w S z ) <-> ( [_ v / x ]_ X R [_ w / x ]_ X /\ [_ w / x ]_ X R [_ z / x ]_ X ) ) |
| 66 | df-br | |- ( v S z <-> <. v , z >. e. S ) |
|
| 67 | 1 | eleq2i | |- ( <. v , z >. e. S <-> <. v , z >. e. { <. x , y >. | X R Y } ) |
| 68 | nfv | |- F/ y [_ v / x ]_ X R [_ z / x ]_ X |
|
| 69 | 61 | breq2d | |- ( y = z -> ( [_ v / x ]_ X R Y <-> [_ v / x ]_ X R [_ z / x ]_ X ) ) |
| 70 | 14 68 16 58 17 69 | opelopabf | |- ( <. v , z >. e. { <. x , y >. | X R Y } <-> [_ v / x ]_ X R [_ z / x ]_ X ) |
| 71 | 66 67 70 | 3bitri | |- ( v S z <-> [_ v / x ]_ X R [_ z / x ]_ X ) |
| 72 | 44 65 71 | 3imtr4g | |- ( ( R Po B /\ ( [_ v / x ]_ X e. B /\ [_ w / x ]_ X e. B /\ [_ z / x ]_ X e. B ) ) -> ( ( v S w /\ w S z ) -> v S z ) ) |
| 73 | 72 | adantlr | |- ( ( ( R Po B /\ A. x e. A X e. B ) /\ ( [_ v / x ]_ X e. B /\ [_ w / x ]_ X e. B /\ [_ z / x ]_ X e. B ) ) -> ( ( v S w /\ w S z ) -> v S z ) ) |
| 74 | 43 73 | syldan | |- ( ( ( R Po B /\ A. x e. A X e. B ) /\ ( v e. A /\ w e. A /\ z e. A ) ) -> ( ( v S w /\ w S z ) -> v S z ) ) |
| 75 | 27 74 | ispod | |- ( ( R Po B /\ A. x e. A X e. B ) -> S Po A ) |