This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The range of the transpositions on a pair is actually a singleton: the transposition of the two elements of the pair. (Contributed by AV, 9-Dec-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pmtrprfvalrn | |- ran ( pmTrsp ` { 1 , 2 } ) = { { <. 1 , 2 >. , <. 2 , 1 >. } } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pmtrprfval | |- ( pmTrsp ` { 1 , 2 } ) = ( p e. { { 1 , 2 } } |-> ( z e. { 1 , 2 } |-> if ( z = 1 , 2 , 1 ) ) ) |
|
| 2 | 1 | rneqi | |- ran ( pmTrsp ` { 1 , 2 } ) = ran ( p e. { { 1 , 2 } } |-> ( z e. { 1 , 2 } |-> if ( z = 1 , 2 , 1 ) ) ) |
| 3 | eqid | |- ( p e. { { 1 , 2 } } |-> ( z e. { 1 , 2 } |-> if ( z = 1 , 2 , 1 ) ) ) = ( p e. { { 1 , 2 } } |-> ( z e. { 1 , 2 } |-> if ( z = 1 , 2 , 1 ) ) ) |
|
| 4 | 3 | rnmpt | |- ran ( p e. { { 1 , 2 } } |-> ( z e. { 1 , 2 } |-> if ( z = 1 , 2 , 1 ) ) ) = { t | E. p e. { { 1 , 2 } } t = ( z e. { 1 , 2 } |-> if ( z = 1 , 2 , 1 ) ) } |
| 5 | 1ex | |- 1 e. _V |
|
| 6 | id | |- ( 1 e. _V -> 1 e. _V ) |
|
| 7 | 2nn | |- 2 e. NN |
|
| 8 | 7 | a1i | |- ( 1 e. _V -> 2 e. NN ) |
| 9 | iftrue | |- ( z = 1 -> if ( z = 1 , 2 , 1 ) = 2 ) |
|
| 10 | 9 | adantl | |- ( ( 1 e. _V /\ z = 1 ) -> if ( z = 1 , 2 , 1 ) = 2 ) |
| 11 | 1ne2 | |- 1 =/= 2 |
|
| 12 | 11 | nesymi | |- -. 2 = 1 |
| 13 | eqeq1 | |- ( z = 2 -> ( z = 1 <-> 2 = 1 ) ) |
|
| 14 | 12 13 | mtbiri | |- ( z = 2 -> -. z = 1 ) |
| 15 | 14 | iffalsed | |- ( z = 2 -> if ( z = 1 , 2 , 1 ) = 1 ) |
| 16 | 15 | adantl | |- ( ( 1 e. _V /\ z = 2 ) -> if ( z = 1 , 2 , 1 ) = 1 ) |
| 17 | 6 8 8 6 10 16 | fmptpr | |- ( 1 e. _V -> { <. 1 , 2 >. , <. 2 , 1 >. } = ( z e. { 1 , 2 } |-> if ( z = 1 , 2 , 1 ) ) ) |
| 18 | 17 | eqeq2d | |- ( 1 e. _V -> ( t = { <. 1 , 2 >. , <. 2 , 1 >. } <-> t = ( z e. { 1 , 2 } |-> if ( z = 1 , 2 , 1 ) ) ) ) |
| 19 | 5 18 | ax-mp | |- ( t = { <. 1 , 2 >. , <. 2 , 1 >. } <-> t = ( z e. { 1 , 2 } |-> if ( z = 1 , 2 , 1 ) ) ) |
| 20 | 19 | bicomi | |- ( t = ( z e. { 1 , 2 } |-> if ( z = 1 , 2 , 1 ) ) <-> t = { <. 1 , 2 >. , <. 2 , 1 >. } ) |
| 21 | 20 | rexbii | |- ( E. p e. { { 1 , 2 } } t = ( z e. { 1 , 2 } |-> if ( z = 1 , 2 , 1 ) ) <-> E. p e. { { 1 , 2 } } t = { <. 1 , 2 >. , <. 2 , 1 >. } ) |
| 22 | 21 | abbii | |- { t | E. p e. { { 1 , 2 } } t = ( z e. { 1 , 2 } |-> if ( z = 1 , 2 , 1 ) ) } = { t | E. p e. { { 1 , 2 } } t = { <. 1 , 2 >. , <. 2 , 1 >. } } |
| 23 | prex | |- { 1 , 2 } e. _V |
|
| 24 | 23 | snnz | |- { { 1 , 2 } } =/= (/) |
| 25 | r19.9rzv | |- ( { { 1 , 2 } } =/= (/) -> ( s = { <. 1 , 2 >. , <. 2 , 1 >. } <-> E. p e. { { 1 , 2 } } s = { <. 1 , 2 >. , <. 2 , 1 >. } ) ) |
|
| 26 | 25 | bicomd | |- ( { { 1 , 2 } } =/= (/) -> ( E. p e. { { 1 , 2 } } s = { <. 1 , 2 >. , <. 2 , 1 >. } <-> s = { <. 1 , 2 >. , <. 2 , 1 >. } ) ) |
| 27 | 24 26 | ax-mp | |- ( E. p e. { { 1 , 2 } } s = { <. 1 , 2 >. , <. 2 , 1 >. } <-> s = { <. 1 , 2 >. , <. 2 , 1 >. } ) |
| 28 | vex | |- s e. _V |
|
| 29 | eqeq1 | |- ( t = s -> ( t = { <. 1 , 2 >. , <. 2 , 1 >. } <-> s = { <. 1 , 2 >. , <. 2 , 1 >. } ) ) |
|
| 30 | 29 | rexbidv | |- ( t = s -> ( E. p e. { { 1 , 2 } } t = { <. 1 , 2 >. , <. 2 , 1 >. } <-> E. p e. { { 1 , 2 } } s = { <. 1 , 2 >. , <. 2 , 1 >. } ) ) |
| 31 | 28 30 | elab | |- ( s e. { t | E. p e. { { 1 , 2 } } t = { <. 1 , 2 >. , <. 2 , 1 >. } } <-> E. p e. { { 1 , 2 } } s = { <. 1 , 2 >. , <. 2 , 1 >. } ) |
| 32 | velsn | |- ( s e. { { <. 1 , 2 >. , <. 2 , 1 >. } } <-> s = { <. 1 , 2 >. , <. 2 , 1 >. } ) |
|
| 33 | 27 31 32 | 3bitr4i | |- ( s e. { t | E. p e. { { 1 , 2 } } t = { <. 1 , 2 >. , <. 2 , 1 >. } } <-> s e. { { <. 1 , 2 >. , <. 2 , 1 >. } } ) |
| 34 | 33 | eqriv | |- { t | E. p e. { { 1 , 2 } } t = { <. 1 , 2 >. , <. 2 , 1 >. } } = { { <. 1 , 2 >. , <. 2 , 1 >. } } |
| 35 | 22 34 | eqtri | |- { t | E. p e. { { 1 , 2 } } t = ( z e. { 1 , 2 } |-> if ( z = 1 , 2 , 1 ) ) } = { { <. 1 , 2 >. , <. 2 , 1 >. } } |
| 36 | 4 35 | eqtri | |- ran ( p e. { { 1 , 2 } } |-> ( z e. { 1 , 2 } |-> if ( z = 1 , 2 , 1 ) ) ) = { { <. 1 , 2 >. , <. 2 , 1 >. } } |
| 37 | 2 36 | eqtri | |- ran ( pmTrsp ` { 1 , 2 } ) = { { <. 1 , 2 >. , <. 2 , 1 >. } } |