This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Express a pair function in maps-to notation. (Contributed by Thierry Arnoux, 3-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fmptpr.1 | |- ( ph -> A e. V ) |
|
| fmptpr.2 | |- ( ph -> B e. W ) |
||
| fmptpr.3 | |- ( ph -> C e. X ) |
||
| fmptpr.4 | |- ( ph -> D e. Y ) |
||
| fmptpr.5 | |- ( ( ph /\ x = A ) -> E = C ) |
||
| fmptpr.6 | |- ( ( ph /\ x = B ) -> E = D ) |
||
| Assertion | fmptpr | |- ( ph -> { <. A , C >. , <. B , D >. } = ( x e. { A , B } |-> E ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fmptpr.1 | |- ( ph -> A e. V ) |
|
| 2 | fmptpr.2 | |- ( ph -> B e. W ) |
|
| 3 | fmptpr.3 | |- ( ph -> C e. X ) |
|
| 4 | fmptpr.4 | |- ( ph -> D e. Y ) |
|
| 5 | fmptpr.5 | |- ( ( ph /\ x = A ) -> E = C ) |
|
| 6 | fmptpr.6 | |- ( ( ph /\ x = B ) -> E = D ) |
|
| 7 | df-pr | |- { <. A , C >. , <. B , D >. } = ( { <. A , C >. } u. { <. B , D >. } ) |
|
| 8 | 7 | a1i | |- ( ph -> { <. A , C >. , <. B , D >. } = ( { <. A , C >. } u. { <. B , D >. } ) ) |
| 9 | 5 1 3 | fmptsnd | |- ( ph -> { <. A , C >. } = ( x e. { A } |-> E ) ) |
| 10 | 9 | uneq1d | |- ( ph -> ( { <. A , C >. } u. { <. B , D >. } ) = ( ( x e. { A } |-> E ) u. { <. B , D >. } ) ) |
| 11 | df-pr | |- { A , B } = ( { A } u. { B } ) |
|
| 12 | 11 | eqcomi | |- ( { A } u. { B } ) = { A , B } |
| 13 | 12 | a1i | |- ( ph -> ( { A } u. { B } ) = { A , B } ) |
| 14 | 2 4 13 6 | fmptapd | |- ( ph -> ( ( x e. { A } |-> E ) u. { <. B , D >. } ) = ( x e. { A , B } |-> E ) ) |
| 15 | 8 10 14 | 3eqtrd | |- ( ph -> { <. A , C >. , <. B , D >. } = ( x e. { A , B } |-> E ) ) |