This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Theorem *14.123 in WhiteheadRussell p. 185. (Contributed by Andrew Salmon, 9-Jun-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pm14.123a | |- ( ( A e. V /\ B e. W ) -> ( A. z A. w ( ph <-> ( z = A /\ w = B ) ) <-> ( A. z A. w ( ph -> ( z = A /\ w = B ) ) /\ [. A / z ]. [. B / w ]. ph ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2albiim | |- ( A. z A. w ( ph <-> ( z = A /\ w = B ) ) <-> ( A. z A. w ( ph -> ( z = A /\ w = B ) ) /\ A. z A. w ( ( z = A /\ w = B ) -> ph ) ) ) |
|
| 2 | 2sbc6g | |- ( ( A e. V /\ B e. W ) -> ( A. z A. w ( ( z = A /\ w = B ) -> ph ) <-> [. A / z ]. [. B / w ]. ph ) ) |
|
| 3 | 2 | anbi2d | |- ( ( A e. V /\ B e. W ) -> ( ( A. z A. w ( ph -> ( z = A /\ w = B ) ) /\ A. z A. w ( ( z = A /\ w = B ) -> ph ) ) <-> ( A. z A. w ( ph -> ( z = A /\ w = B ) ) /\ [. A / z ]. [. B / w ]. ph ) ) ) |
| 4 | 1 3 | bitrid | |- ( ( A e. V /\ B e. W ) -> ( A. z A. w ( ph <-> ( z = A /\ w = B ) ) <-> ( A. z A. w ( ph -> ( z = A /\ w = B ) ) /\ [. A / z ]. [. B / w ]. ph ) ) ) |