This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Theorem *14.123 in WhiteheadRussell p. 185. (Contributed by Andrew Salmon, 9-Jun-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pm14.123a | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ∀ 𝑧 ∀ 𝑤 ( 𝜑 ↔ ( 𝑧 = 𝐴 ∧ 𝑤 = 𝐵 ) ) ↔ ( ∀ 𝑧 ∀ 𝑤 ( 𝜑 → ( 𝑧 = 𝐴 ∧ 𝑤 = 𝐵 ) ) ∧ [ 𝐴 / 𝑧 ] [ 𝐵 / 𝑤 ] 𝜑 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2albiim | ⊢ ( ∀ 𝑧 ∀ 𝑤 ( 𝜑 ↔ ( 𝑧 = 𝐴 ∧ 𝑤 = 𝐵 ) ) ↔ ( ∀ 𝑧 ∀ 𝑤 ( 𝜑 → ( 𝑧 = 𝐴 ∧ 𝑤 = 𝐵 ) ) ∧ ∀ 𝑧 ∀ 𝑤 ( ( 𝑧 = 𝐴 ∧ 𝑤 = 𝐵 ) → 𝜑 ) ) ) | |
| 2 | 2sbc6g | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ∀ 𝑧 ∀ 𝑤 ( ( 𝑧 = 𝐴 ∧ 𝑤 = 𝐵 ) → 𝜑 ) ↔ [ 𝐴 / 𝑧 ] [ 𝐵 / 𝑤 ] 𝜑 ) ) | |
| 3 | 2 | anbi2d | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ( ∀ 𝑧 ∀ 𝑤 ( 𝜑 → ( 𝑧 = 𝐴 ∧ 𝑤 = 𝐵 ) ) ∧ ∀ 𝑧 ∀ 𝑤 ( ( 𝑧 = 𝐴 ∧ 𝑤 = 𝐵 ) → 𝜑 ) ) ↔ ( ∀ 𝑧 ∀ 𝑤 ( 𝜑 → ( 𝑧 = 𝐴 ∧ 𝑤 = 𝐵 ) ) ∧ [ 𝐴 / 𝑧 ] [ 𝐵 / 𝑤 ] 𝜑 ) ) ) |
| 4 | 1 3 | bitrid | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ∀ 𝑧 ∀ 𝑤 ( 𝜑 ↔ ( 𝑧 = 𝐴 ∧ 𝑤 = 𝐵 ) ) ↔ ( ∀ 𝑧 ∀ 𝑤 ( 𝜑 → ( 𝑧 = 𝐴 ∧ 𝑤 = 𝐵 ) ) ∧ [ 𝐴 / 𝑧 ] [ 𝐵 / 𝑤 ] 𝜑 ) ) ) |