This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Theorem *13.21 in WhiteheadRussell p. 179. (Contributed by Andrew Salmon, 3-Jun-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 2sbc6g | |- ( ( A e. C /\ B e. D ) -> ( A. z A. w ( ( z = A /\ w = B ) -> ph ) <-> [. A / z ]. [. B / w ]. ph ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq2 | |- ( y = B -> ( w = y <-> w = B ) ) |
|
| 2 | 1 | anbi2d | |- ( y = B -> ( ( z = x /\ w = y ) <-> ( z = x /\ w = B ) ) ) |
| 3 | 2 | imbi1d | |- ( y = B -> ( ( ( z = x /\ w = y ) -> ph ) <-> ( ( z = x /\ w = B ) -> ph ) ) ) |
| 4 | 3 | 2albidv | |- ( y = B -> ( A. z A. w ( ( z = x /\ w = y ) -> ph ) <-> A. z A. w ( ( z = x /\ w = B ) -> ph ) ) ) |
| 5 | dfsbcq | |- ( y = B -> ( [. y / w ]. ph <-> [. B / w ]. ph ) ) |
|
| 6 | 5 | sbcbidv | |- ( y = B -> ( [. x / z ]. [. y / w ]. ph <-> [. x / z ]. [. B / w ]. ph ) ) |
| 7 | 4 6 | bibi12d | |- ( y = B -> ( ( A. z A. w ( ( z = x /\ w = y ) -> ph ) <-> [. x / z ]. [. y / w ]. ph ) <-> ( A. z A. w ( ( z = x /\ w = B ) -> ph ) <-> [. x / z ]. [. B / w ]. ph ) ) ) |
| 8 | eqeq2 | |- ( x = A -> ( z = x <-> z = A ) ) |
|
| 9 | 8 | anbi1d | |- ( x = A -> ( ( z = x /\ w = B ) <-> ( z = A /\ w = B ) ) ) |
| 10 | 9 | imbi1d | |- ( x = A -> ( ( ( z = x /\ w = B ) -> ph ) <-> ( ( z = A /\ w = B ) -> ph ) ) ) |
| 11 | 10 | 2albidv | |- ( x = A -> ( A. z A. w ( ( z = x /\ w = B ) -> ph ) <-> A. z A. w ( ( z = A /\ w = B ) -> ph ) ) ) |
| 12 | dfsbcq | |- ( x = A -> ( [. x / z ]. [. B / w ]. ph <-> [. A / z ]. [. B / w ]. ph ) ) |
|
| 13 | 11 12 | bibi12d | |- ( x = A -> ( ( A. z A. w ( ( z = x /\ w = B ) -> ph ) <-> [. x / z ]. [. B / w ]. ph ) <-> ( A. z A. w ( ( z = A /\ w = B ) -> ph ) <-> [. A / z ]. [. B / w ]. ph ) ) ) |
| 14 | vex | |- x e. _V |
|
| 15 | 14 | sbc6 | |- ( [. x / z ]. [. y / w ]. ph <-> A. z ( z = x -> [. y / w ]. ph ) ) |
| 16 | 19.21v | |- ( A. w ( z = x -> ( w = y -> ph ) ) <-> ( z = x -> A. w ( w = y -> ph ) ) ) |
|
| 17 | impexp | |- ( ( ( z = x /\ w = y ) -> ph ) <-> ( z = x -> ( w = y -> ph ) ) ) |
|
| 18 | 17 | albii | |- ( A. w ( ( z = x /\ w = y ) -> ph ) <-> A. w ( z = x -> ( w = y -> ph ) ) ) |
| 19 | vex | |- y e. _V |
|
| 20 | 19 | sbc6 | |- ( [. y / w ]. ph <-> A. w ( w = y -> ph ) ) |
| 21 | 20 | imbi2i | |- ( ( z = x -> [. y / w ]. ph ) <-> ( z = x -> A. w ( w = y -> ph ) ) ) |
| 22 | 16 18 21 | 3bitr4ri | |- ( ( z = x -> [. y / w ]. ph ) <-> A. w ( ( z = x /\ w = y ) -> ph ) ) |
| 23 | 22 | albii | |- ( A. z ( z = x -> [. y / w ]. ph ) <-> A. z A. w ( ( z = x /\ w = y ) -> ph ) ) |
| 24 | 15 23 | bitr2i | |- ( A. z A. w ( ( z = x /\ w = y ) -> ph ) <-> [. x / z ]. [. y / w ]. ph ) |
| 25 | 7 13 24 | vtocl2g | |- ( ( B e. D /\ A e. C ) -> ( A. z A. w ( ( z = A /\ w = B ) -> ph ) <-> [. A / z ]. [. B / w ]. ph ) ) |
| 26 | 25 | ancoms | |- ( ( A e. C /\ B e. D ) -> ( A. z A. w ( ( z = A /\ w = B ) -> ph ) <-> [. A / z ]. [. B / w ]. ph ) ) |