This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Theorem *14.122 in WhiteheadRussell p. 185. (Contributed by Andrew Salmon, 9-Jun-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pm14.122c | |- ( A e. V -> ( A. x ( ph <-> x = A ) <-> ( A. x ( ph -> x = A ) /\ E. x ph ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm14.122a | |- ( A e. V -> ( A. x ( ph <-> x = A ) <-> ( A. x ( ph -> x = A ) /\ [. A / x ]. ph ) ) ) |
|
| 2 | pm14.122b | |- ( A e. V -> ( ( A. x ( ph -> x = A ) /\ [. A / x ]. ph ) <-> ( A. x ( ph -> x = A ) /\ E. x ph ) ) ) |
|
| 3 | 1 2 | bitrd | |- ( A e. V -> ( A. x ( ph <-> x = A ) <-> ( A. x ( ph -> x = A ) /\ E. x ph ) ) ) |