This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Property deduction for univariate polynomial addition. (Contributed by Stefan O'Rear, 27-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ply1baspropd.b1 | |- ( ph -> B = ( Base ` R ) ) |
|
| ply1baspropd.b2 | |- ( ph -> B = ( Base ` S ) ) |
||
| ply1baspropd.p | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x ( +g ` R ) y ) = ( x ( +g ` S ) y ) ) |
||
| Assertion | ply1plusgpropd | |- ( ph -> ( +g ` ( Poly1 ` R ) ) = ( +g ` ( Poly1 ` S ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ply1baspropd.b1 | |- ( ph -> B = ( Base ` R ) ) |
|
| 2 | ply1baspropd.b2 | |- ( ph -> B = ( Base ` S ) ) |
|
| 3 | ply1baspropd.p | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x ( +g ` R ) y ) = ( x ( +g ` S ) y ) ) |
|
| 4 | 1 2 3 | psrplusgpropd | |- ( ph -> ( +g ` ( 1o mPwSer R ) ) = ( +g ` ( 1o mPwSer S ) ) ) |
| 5 | eqid | |- ( 1o mPoly R ) = ( 1o mPoly R ) |
|
| 6 | eqid | |- ( 1o mPwSer R ) = ( 1o mPwSer R ) |
|
| 7 | eqid | |- ( +g ` ( 1o mPoly R ) ) = ( +g ` ( 1o mPoly R ) ) |
|
| 8 | 5 6 7 | mplplusg | |- ( +g ` ( 1o mPoly R ) ) = ( +g ` ( 1o mPwSer R ) ) |
| 9 | eqid | |- ( 1o mPoly S ) = ( 1o mPoly S ) |
|
| 10 | eqid | |- ( 1o mPwSer S ) = ( 1o mPwSer S ) |
|
| 11 | eqid | |- ( +g ` ( 1o mPoly S ) ) = ( +g ` ( 1o mPoly S ) ) |
|
| 12 | 9 10 11 | mplplusg | |- ( +g ` ( 1o mPoly S ) ) = ( +g ` ( 1o mPwSer S ) ) |
| 13 | 4 8 12 | 3eqtr4g | |- ( ph -> ( +g ` ( 1o mPoly R ) ) = ( +g ` ( 1o mPoly S ) ) ) |
| 14 | eqid | |- ( Poly1 ` R ) = ( Poly1 ` R ) |
|
| 15 | eqid | |- ( +g ` ( Poly1 ` R ) ) = ( +g ` ( Poly1 ` R ) ) |
|
| 16 | 14 5 15 | ply1plusg | |- ( +g ` ( Poly1 ` R ) ) = ( +g ` ( 1o mPoly R ) ) |
| 17 | eqid | |- ( Poly1 ` S ) = ( Poly1 ` S ) |
|
| 18 | eqid | |- ( +g ` ( Poly1 ` S ) ) = ( +g ` ( Poly1 ` S ) ) |
|
| 19 | 17 9 18 | ply1plusg | |- ( +g ` ( Poly1 ` S ) ) = ( +g ` ( 1o mPoly S ) ) |
| 20 | 13 16 19 | 3eqtr4g | |- ( ph -> ( +g ` ( Poly1 ` R ) ) = ( +g ` ( Poly1 ` S ) ) ) |