This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Property deduction for univariate polynomial addition. (Contributed by Stefan O'Rear, 27-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ply1baspropd.b1 | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝑅 ) ) | |
| ply1baspropd.b2 | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝑆 ) ) | ||
| ply1baspropd.p | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) | ||
| Assertion | ply1plusgpropd | ⊢ ( 𝜑 → ( +g ‘ ( Poly1 ‘ 𝑅 ) ) = ( +g ‘ ( Poly1 ‘ 𝑆 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ply1baspropd.b1 | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝑅 ) ) | |
| 2 | ply1baspropd.b2 | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝑆 ) ) | |
| 3 | ply1baspropd.p | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) | |
| 4 | 1 2 3 | psrplusgpropd | ⊢ ( 𝜑 → ( +g ‘ ( 1o mPwSer 𝑅 ) ) = ( +g ‘ ( 1o mPwSer 𝑆 ) ) ) |
| 5 | eqid | ⊢ ( 1o mPoly 𝑅 ) = ( 1o mPoly 𝑅 ) | |
| 6 | eqid | ⊢ ( 1o mPwSer 𝑅 ) = ( 1o mPwSer 𝑅 ) | |
| 7 | eqid | ⊢ ( +g ‘ ( 1o mPoly 𝑅 ) ) = ( +g ‘ ( 1o mPoly 𝑅 ) ) | |
| 8 | 5 6 7 | mplplusg | ⊢ ( +g ‘ ( 1o mPoly 𝑅 ) ) = ( +g ‘ ( 1o mPwSer 𝑅 ) ) |
| 9 | eqid | ⊢ ( 1o mPoly 𝑆 ) = ( 1o mPoly 𝑆 ) | |
| 10 | eqid | ⊢ ( 1o mPwSer 𝑆 ) = ( 1o mPwSer 𝑆 ) | |
| 11 | eqid | ⊢ ( +g ‘ ( 1o mPoly 𝑆 ) ) = ( +g ‘ ( 1o mPoly 𝑆 ) ) | |
| 12 | 9 10 11 | mplplusg | ⊢ ( +g ‘ ( 1o mPoly 𝑆 ) ) = ( +g ‘ ( 1o mPwSer 𝑆 ) ) |
| 13 | 4 8 12 | 3eqtr4g | ⊢ ( 𝜑 → ( +g ‘ ( 1o mPoly 𝑅 ) ) = ( +g ‘ ( 1o mPoly 𝑆 ) ) ) |
| 14 | eqid | ⊢ ( Poly1 ‘ 𝑅 ) = ( Poly1 ‘ 𝑅 ) | |
| 15 | eqid | ⊢ ( +g ‘ ( Poly1 ‘ 𝑅 ) ) = ( +g ‘ ( Poly1 ‘ 𝑅 ) ) | |
| 16 | 14 5 15 | ply1plusg | ⊢ ( +g ‘ ( Poly1 ‘ 𝑅 ) ) = ( +g ‘ ( 1o mPoly 𝑅 ) ) |
| 17 | eqid | ⊢ ( Poly1 ‘ 𝑆 ) = ( Poly1 ‘ 𝑆 ) | |
| 18 | eqid | ⊢ ( +g ‘ ( Poly1 ‘ 𝑆 ) ) = ( +g ‘ ( Poly1 ‘ 𝑆 ) ) | |
| 19 | 17 9 18 | ply1plusg | ⊢ ( +g ‘ ( Poly1 ‘ 𝑆 ) ) = ( +g ‘ ( 1o mPoly 𝑆 ) ) |
| 20 | 13 16 19 | 3eqtr4g | ⊢ ( 𝜑 → ( +g ‘ ( Poly1 ‘ 𝑅 ) ) = ( +g ‘ ( Poly1 ‘ 𝑆 ) ) ) |