This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The range of a projection. Part of Theorem 26.2 of Halmos p. 44. (Contributed by NM, 30-Oct-1999) (Revised by Mario Carneiro, 10-Sep-2015) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | pjfn.1 | |- H e. CH |
|
| Assertion | pjrni | |- ran ( projh ` H ) = H |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pjfn.1 | |- H e. CH |
|
| 2 | 1 | pjfni | |- ( projh ` H ) Fn ~H |
| 3 | 1 | pjcli | |- ( x e. ~H -> ( ( projh ` H ) ` x ) e. H ) |
| 4 | 3 | rgen | |- A. x e. ~H ( ( projh ` H ) ` x ) e. H |
| 5 | ffnfv | |- ( ( projh ` H ) : ~H --> H <-> ( ( projh ` H ) Fn ~H /\ A. x e. ~H ( ( projh ` H ) ` x ) e. H ) ) |
|
| 6 | 2 4 5 | mpbir2an | |- ( projh ` H ) : ~H --> H |
| 7 | frn | |- ( ( projh ` H ) : ~H --> H -> ran ( projh ` H ) C_ H ) |
|
| 8 | 6 7 | ax-mp | |- ran ( projh ` H ) C_ H |
| 9 | pjid | |- ( ( H e. CH /\ y e. H ) -> ( ( projh ` H ) ` y ) = y ) |
|
| 10 | 1 9 | mpan | |- ( y e. H -> ( ( projh ` H ) ` y ) = y ) |
| 11 | 1 | cheli | |- ( y e. H -> y e. ~H ) |
| 12 | fnfvelrn | |- ( ( ( projh ` H ) Fn ~H /\ y e. ~H ) -> ( ( projh ` H ) ` y ) e. ran ( projh ` H ) ) |
|
| 13 | 2 11 12 | sylancr | |- ( y e. H -> ( ( projh ` H ) ` y ) e. ran ( projh ` H ) ) |
| 14 | 10 13 | eqeltrrd | |- ( y e. H -> y e. ran ( projh ` H ) ) |
| 15 | 14 | ssriv | |- H C_ ran ( projh ` H ) |
| 16 | 8 15 | eqssi | |- ran ( projh ` H ) = H |