This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The range of a projection. Part of Theorem 26.2 of Halmos p. 44. (Contributed by NM, 30-Oct-1999) (Revised by Mario Carneiro, 10-Sep-2015) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | pjfn.1 | ⊢ 𝐻 ∈ Cℋ | |
| Assertion | pjrni | ⊢ ran ( projℎ ‘ 𝐻 ) = 𝐻 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pjfn.1 | ⊢ 𝐻 ∈ Cℋ | |
| 2 | 1 | pjfni | ⊢ ( projℎ ‘ 𝐻 ) Fn ℋ |
| 3 | 1 | pjcli | ⊢ ( 𝑥 ∈ ℋ → ( ( projℎ ‘ 𝐻 ) ‘ 𝑥 ) ∈ 𝐻 ) |
| 4 | 3 | rgen | ⊢ ∀ 𝑥 ∈ ℋ ( ( projℎ ‘ 𝐻 ) ‘ 𝑥 ) ∈ 𝐻 |
| 5 | ffnfv | ⊢ ( ( projℎ ‘ 𝐻 ) : ℋ ⟶ 𝐻 ↔ ( ( projℎ ‘ 𝐻 ) Fn ℋ ∧ ∀ 𝑥 ∈ ℋ ( ( projℎ ‘ 𝐻 ) ‘ 𝑥 ) ∈ 𝐻 ) ) | |
| 6 | 2 4 5 | mpbir2an | ⊢ ( projℎ ‘ 𝐻 ) : ℋ ⟶ 𝐻 |
| 7 | frn | ⊢ ( ( projℎ ‘ 𝐻 ) : ℋ ⟶ 𝐻 → ran ( projℎ ‘ 𝐻 ) ⊆ 𝐻 ) | |
| 8 | 6 7 | ax-mp | ⊢ ran ( projℎ ‘ 𝐻 ) ⊆ 𝐻 |
| 9 | pjid | ⊢ ( ( 𝐻 ∈ Cℋ ∧ 𝑦 ∈ 𝐻 ) → ( ( projℎ ‘ 𝐻 ) ‘ 𝑦 ) = 𝑦 ) | |
| 10 | 1 9 | mpan | ⊢ ( 𝑦 ∈ 𝐻 → ( ( projℎ ‘ 𝐻 ) ‘ 𝑦 ) = 𝑦 ) |
| 11 | 1 | cheli | ⊢ ( 𝑦 ∈ 𝐻 → 𝑦 ∈ ℋ ) |
| 12 | fnfvelrn | ⊢ ( ( ( projℎ ‘ 𝐻 ) Fn ℋ ∧ 𝑦 ∈ ℋ ) → ( ( projℎ ‘ 𝐻 ) ‘ 𝑦 ) ∈ ran ( projℎ ‘ 𝐻 ) ) | |
| 13 | 2 11 12 | sylancr | ⊢ ( 𝑦 ∈ 𝐻 → ( ( projℎ ‘ 𝐻 ) ‘ 𝑦 ) ∈ ran ( projℎ ‘ 𝐻 ) ) |
| 14 | 10 13 | eqeltrrd | ⊢ ( 𝑦 ∈ 𝐻 → 𝑦 ∈ ran ( projℎ ‘ 𝐻 ) ) |
| 15 | 14 | ssriv | ⊢ 𝐻 ⊆ ran ( projℎ ‘ 𝐻 ) |
| 16 | 8 15 | eqssi | ⊢ ran ( projℎ ‘ 𝐻 ) = 𝐻 |